<table>
<thead>
<tr>
<th>Fig No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.1.1</td>
<td>Wrought Aluminium Alloy Classifications based on Alloying elements, welding capability and heat treatment</td>
<td>4</td>
</tr>
<tr>
<td>Fig.2.1</td>
<td>Effect of addition of Magnesium on Aluminium on Yield Stress and Elongation</td>
<td>11</td>
</tr>
<tr>
<td>Fig.2.2</td>
<td>TEM image of Al$_3$Sc precipitate in the aluminium matrix of AA2219</td>
<td>18</td>
</tr>
<tr>
<td>Fig.2.3</td>
<td>Different tool pin shapes used in FS welding of AA5083-H321 aluminium alloy plate</td>
<td>30</td>
</tr>
<tr>
<td>Fig.3.1</td>
<td>Flow Chart of the Experimental Work</td>
<td>52</td>
</tr>
<tr>
<td>Fig.3.2</td>
<td>Optical microstructure and SEM image of AA5083-H321 alloy showing the presence of Al$_6$(Fe,Mn), Al$_3$Mg$_2$ and Mg$_2$Si</td>
<td>53</td>
</tr>
<tr>
<td>Fig.3.3</td>
<td>SEM image of AA5083-H321alloy at higher magnification showing the Al$_6$(Fe,Mn) and Al$_3$Mg$_2$ particles</td>
<td>54</td>
</tr>
<tr>
<td>Fig.3.4</td>
<td>EDS image of Al$_3$Mg$_2$ showing the presence of Al and Mg</td>
<td>54</td>
</tr>
<tr>
<td>Fig.3.5</td>
<td>EDS image of Al$_6$(Fe,Mn) showing the presence of Al, Fe and Mn</td>
<td>54</td>
</tr>
<tr>
<td>Fig.3.6</td>
<td>SEM image of AA5083-H321alloy at higher magnification showing the presence of the Mg$_2$Si particles</td>
<td>55</td>
</tr>
<tr>
<td>Fig.3.7</td>
<td>Optical microstructure and SEM image of Cast Al-Mg-Sc alloy</td>
<td>55</td>
</tr>
<tr>
<td>Fig.3.8</td>
<td>Butt weld configuration of FS weld</td>
<td>56</td>
</tr>
<tr>
<td>Fig.3.9</td>
<td>Friction Stir Welding Tool</td>
<td>56</td>
</tr>
<tr>
<td>Fig.3.10</td>
<td>Butt weld configuration for TIG weld</td>
<td>57</td>
</tr>
<tr>
<td>Fig.3.11</td>
<td>Butt weld configuration for LB weld</td>
<td>58</td>
</tr>
<tr>
<td>Fig.3.12</td>
<td>ASTM-E8 Sub-size standard tensile testing specimen diagram</td>
<td>60</td>
</tr>
<tr>
<td>Fig.3.13</td>
<td>All weld sample</td>
<td>60</td>
</tr>
<tr>
<td>Fig.3.14</td>
<td>Failure location of tensile specimens of AA5083-H321 alloy and Cast Al-Mg-Sc alloy</td>
<td>60</td>
</tr>
<tr>
<td>Fig.4.1</td>
<td>Bead Appearance of FS weld of AA5083-H321 alloy</td>
<td>62</td>
</tr>
<tr>
<td>Fig.4.2</td>
<td>Optical Macrostructure of FS weld of AA5083-H321 showing The presence of various regions of the weld joint</td>
<td>63</td>
</tr>
</tbody>
</table>
Fig. 4.3. Microstructure of the top of the weld nugget taken at advancing side showing the clear demarcation between TMAZ and weld nugget 64

Fig. 4.4. Microstructure at the middle of the weld nugget 65

Fig. 4.5. Microstructure of weld nugget at top showing fine grains 65

Fig. 4.6. Microstructure of weld nugget at bottom showing the presence of coarse grains 65

Fig. 4.7. SEM image of AA5083-H321 FS weld 66

Fig. 4.8. Distribution of hardness in AA5083-H321 alloy FS weld 67

Fig. 4.9. Failure location of tensile specimens of FS welded joints of AA5083-H321 alloy at 9 kN 68

Fig. 4.10. Fracture surface of FS welded joint of AA5083-H321 alloy exhibits dimples indicating the ductile failure mode of this weld joint 69

Fig. 4.11. Bead Appearance of TIG welded joint with the presence of under fill formed due to the absence of filler material 73

Fig. 4.12. Optical Macrostructure of TIG welded joint of AA5083-H321 alloy 75

Fig. 4.13. Microstructure of Heat affected zone of TIG welded joint of AA5083-H321 alloy 77

Fig. 4.14. Microstructure of TIG weld showing shrinkage cavity 77

Fig. 4.15. Microstructure of TIG weld at the top showing the presence of Micro pores and voids in AA5083-H321 alloy 77

Fig. 4.16. Microstructure of weld at the middle showing voids only 78

Fig. 4.17. Microstructure of TIG weld showing equi-axed grains 78

Fig. 4.18. Microstructure of TIG weld at the bottom 78

Fig. 4.19. SEM image of TIG welded joint of AA5083-H321 alloy 79

Fig. 4.20. Distribution of hardness in AA5083-H321 alloy TIG weld 80

Fig. 4.21. Fracture surface of TIG welded joint of AA5083-H321 alloy Exhibiting the presence of coarse dendrites and cleavage facets 81

Fig. 4.22. Bead Appearance of LB weld at 3 kW 84
Fig.4.23. Macrostructure of LB welded joint of AA5083-H321 alloy at 3 kW
Fig.4.24. Macrostructure of LB welded joint of AA5083-H321 alloy at 3.25 kW
Fig.4.25. Macrostructure of LB welded joint of AA5083-H321 alloy at 3.5 kW
Fig.4.26. Microstructure of AA5083-H321 base metal and weld at 3 kW
Fig.4.27. Microstructure of enlarged columnar grains at HAZ
Fig.4.28. Microstructure of LB weld showing fine dendrites
Fig.4.29. Microstructure of Fusion line of LB weld at 3.5 kW
Fig.4.30. Microstructure of LB weld showing Macro porosity and Fine dendrite
Fig.4.31. Microstructure of LB weld showing Fine dendrite
Fig.4.32. Microstructure of LB welded joint of AA5083-H321 alloy at 3.5 kW
Fig.4.33. SEM image of AA5083-H321 Base Metal
Fig.4.34. SEM image of LB Welded joint of AA5083-H321 alloy at 3 kW
Fig.4.35. EDS of Al₆(Fe,Mn)
Fig.4.36. EDS image of Al₆(Fe,Mn)
Fig.4.37. SEM image of LB welded joint of AA5083-H321 alloy at 3.5 kW
Fig.4.38. SEM image of LB welded joint of AA5083-H321 alloy at 3.5 kW showing the presence of uniform distribution of particles
Fig.4.39. EDS image of Particle 1
Fig.4.40. EDS image of Particle 2
Fig.4.41. Distribution of hardness in AA5083-H321 alloy LB weld
Fig.4.42. Failure location of tensile specimens of AA5083-H321 alloy LB weld at 3 kW
Fig.4.43. Failure location of tensile specimens of AA5083-H321 alloy LB weld at 3.25 kW
Fig. 4.44. Failure location of tensile specimens of AA5083-H321 alloy LB weld at 3.5 kW 97
Fig. 4.45. Fracture surface of LB welded joint of AA5083-H321 alloy showing the presence of micro pores 97
Fig. 4.46. Macrostructure of Cast Al-Mg-Sc alloy FS weld 101
Fig. 4.47. Microstructure of the TMAZ on the advancing side 103
Fig. 4.48. Microstructure of the TMAZ on the retreating side 103
Fig. 4.49. Microstructure of TMAZ and nugget zone at the top 104
Fig. 4.50. Microstructure of TMAZ and nugget zone at the middle 104
Fig. 4.51. Microstructure of TMAZ and nugget zone at the bottom 104
Fig. 4.52. Microstructure of Intersection at weld bottom 105
Fig. 4.53. Microstructure of the Weld Nugget at the top 105
Fig. 4.54. Microstructure of the Weld Nugget at the bottom 105
Fig. 4.55. SEM image of Cast Al-Mg-Sc alloy FS weld 106
Fig. 4.56. Distribution of hardness in Cast Al-Mg-Sc alloy FS weld 107
Fig. 4.57. Broken samples of Cast Al-Mg-Sc alloy FS weld (Global Joint) 108
Fig. 4.58. Broken samples of Cast Al-Mg-Sc alloy FS weld (All Weld) 109
Fig. 4.59. Fracture surface of Cast Al-Mg-Sc alloy FS weld 109
Fig. 4.60. Tensile properties of TIG, LB and FS welded joints of AA5083-H321 alloy 112
Fig. 4.61. Hardness values of TIG, LB and FS welded joints of AA5083-H321 alloy 112
Fig. 4.62. Tensile properties of FS welded joints of AA5083-H321 alloy and Cast Al-Mg-Sc alloy in comparison with respective base metals. 113
Fig. 4.63. Ductile property of FS welded joints of AA5083-H321 alloy and Cast Al-Mg-Sc alloy in comparison with respective base metals 113
Fig. 4.64. Hardness values of FS welded joints of AA5083-H321 alloy and Cast Al-Mg-Sc alloy in comparison with respective base metals 114