TABLE OF CONTENTS

Declaration
Certificate
Dedication
Abstract
Acknowledgement
Table of Contents
List of Figures
List of Tables
Nomenclature

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1.</td>
<td>Importance of aluminium and its alloys</td>
<td>1</td>
</tr>
<tr>
<td>1.2.</td>
<td>Classifications of aluminium alloys</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1.</td>
<td>Cast alloy designation system</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2.</td>
<td>Wrought alloy designation system</td>
<td>4</td>
</tr>
<tr>
<td>1.3.</td>
<td>Welding of Aluminium-Magnesium and Aluminium-Magnesium-Scandium alloys</td>
<td>4</td>
</tr>
<tr>
<td>1.4.</td>
<td>Motivation of the research work</td>
<td>7</td>
</tr>
<tr>
<td>1.5.</td>
<td>Objectives</td>
<td>8</td>
</tr>
<tr>
<td>1.6.</td>
<td>Organization of the thesis</td>
<td>8</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>LITERATURE REVIEW</td>
<td>10</td>
</tr>
<tr>
<td>2.1.</td>
<td>Candidate Materials</td>
<td>10</td>
</tr>
<tr>
<td>2.1.1.</td>
<td>Aluminium-Magnesium alloy 5083</td>
<td>10</td>
</tr>
<tr>
<td>2.1.2.</td>
<td>Aluminium – Magnesium-Scandium alloys</td>
<td>14</td>
</tr>
<tr>
<td>2.2.</td>
<td>Microstructure and Mechanical properties of Weldments</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Friction-Stir welding of heat-treatable Aluminium alloys</td>
<td>19</td>
</tr>
<tr>
<td>2.2.2.</td>
<td>Friction-Stir welding of Aluminium-Magnesium alloys</td>
<td>22</td>
</tr>
<tr>
<td>2.2.3.</td>
<td>Metal Inert Gas welding of Aluminium-Magnesium Alloys</td>
<td>32</td>
</tr>
<tr>
<td>2.2.4.</td>
<td>Tungsten Inert Gas welding of Aluminium-Magnesium Alloys</td>
<td>34</td>
</tr>
<tr>
<td>2.2.5.</td>
<td>Nd:YAG laser beam welding of Aluminium-Magnesium Alloys</td>
<td>37</td>
</tr>
</tbody>
</table>
2.2.6. CO₂ Laser Beam welding of Aluminium-Magnesium Alloys 41
2.2.7. Metal Inert Gas welding of wrought Aluminium-Magnesium -Scandium alloy 47
2.2.8. Friction-Stir welding of wrought Aluminium-Magnesium -Scandium alloy 47

2.3. Gaps in the Existing Literature 50
2.4. Problem Formulation 51

Chapter 3 EXPERIMENTATION 52
3.1. Basemetal Characterization 52
3.2. Weldment Characterization 56
 3.2.1. Friction-Stir welding 56
 3.2.2. Tungsten Inert Gas welding 57
 3.2.3. Laser Beam welding 58
 3.2.4. Compositional analysis 58
 3.2.5. Optical metallography 59
 3.2.6. Scanning electron microscopy 59
 3.2.7. Hardness testing 59
 3.2.8. Tensile testing 59

Chapter 4 RESULTS AND DISCUSSIONS 61
4.1. Friction Stir welding of AA5083-H321 Aluminium alloy 61
 4.1.1. Bead appearance of Friction Stir welded AA5083-H321 61
 4.1.2. Compositional analysis of Friction Stir welded AA5083-H321 62
 4.1.3. Optical macrostructure of Friction Stir welded AA5083-H321 63
 4.1.4. Optical microstructure of Friction Stir welded AA5083-H321 64
 4.1.5. Microstructure of Friction Stir welded AA5083-H321 66
 4.1.6. Hardness of Friction Stir welded AA5083-H321 66
 4.1.7. Tensile properties of Friction Stir welded AA5083-H321 68
 4.1.8. Fractographic studies of Friction Stir welded AA5083-H321 69
 4.1.9. Discussions on Friction Stir welding of AA5083-H321 alloy 69
 4.1.10. Conclusions 71
4.2. Tungsten Inert Gas welding of AA5083-H321 Aluminium alloy 73
4.2.1. Bead appearance of Tungsten Inert Gas welded AA5083-H321
4.2.2. Compositional analysis of Tungsten Inert Gas welded AA5083-H321
4.2.3. Optical macrostructure of Tungsten Inert Gas welded AA5083-H321
4.2.4. Optical microstructure of Tungsten Inert Gas welded AA5083-H321
4.2.5. Microstructure of Tungsten Inert Gas welded AA5083-H321
4.2.6. Hardness of Tungsten Inert Gas welded AA5083-H321
4.2.7. Tensile properties of Tungsten Inert Gas welded AA5083-H321
4.2.8. Fractographic studies of Tungsten Inert Gas welded AA5083-H321
4.2.9. Discussions on Tungsten Inert Gas welding of AA5083-H321 alloy
4.2.10. Conclusions

4.3. Laser Beam welding of AA5083-H321 Aluminium alloy
4.3.1. Bead appearance of Laser Beam welded AA5083-H321
4.3.2. Compositional analysis of Laser Beam welded AA5083-H321
4.3.3. Optical macrostructure of Laser Beam welded AA5083-H321
4.3.4. Optical microstructure of Laser Beam welded AA5083-H321 at 3 kW
4.3.5. Optical microstructure of Laser Beam welded AA5083-H321 at 3.5 kW
4.3.6. Microstructure of Laser Beam welded AA5083-H321 at 3 kW
4.3.7. Microstructure of Laser Beam welded AA5083-H321 at 3.5 kW
4.3.8. Hardness of Laser Beam welded AA5083-H321
4.3.9. Tensile properties of Laser Beam welded AA5083-H321
4.3.10. Fractographic studies of Laser Beam welded AA5083-H321
4.3.11. Discussions on Laser Beam welding of AA5083-H321 alloy
4.3.12. Conclusions

4.4. Friction Stir welding of Cast
Aluminium-Magnesium-Scandium alloy 101

4.4.1. Compositional analysis of Friction Stir welded Cast Al-Mg-Sc alloy 101
4.4.2. Optical macrostructure of Friction Stir welded Cast Al-Mg-Sc alloy 101
4.4.3. Optical microstructure of Friction Stir welded Cast Al-Mg-Sc alloy 102
4.4.4. Microstructure of Friction Stir welded Cast Al-Mg-Sc alloy 106
4.4.5. Hardness of Friction Stir welded Cast Al-Mg-Sc alloy 106
4.4.6. Tensile properties of Friction Stir welded Cast Al-Mg-Sc alloy 107
4.4.7. Fractographic studies of Friction Stir welded Cast Al-Mg-Sc alloy 109
4.4.8. Discussions on Friction Stir welding of Cast Aluminium-Magnesium-Scandium alloy 110
4.4.9. Conclusions 111

4.5. Comparative Discussions 112
4.5.1. AA5083-H321 112
4.5.2. Friction Stir welding of AA5083-H321 and Cast Al-Mg-Sc alloy 114

4.6. Contributions to the Literature 115

Chapter 5 CONCLUSIONS 116
Future Work 117

REFERERENCS
LIST OF PUBLICATIONS