LIST OF FIGURES

Fig. 1.1: Different types of cancer named accordingly from which they originate from the body.

Fig. 1.2: A typical skin cross section of human skin.

Fig. 1.3: Epidermal differentiation process.

Fig. 1.4: Individual figures represent; (A) Basal cell carcinoma; (B) Squamous cell carcinoma; (C) Melanoma.

Fig. 1.5: Various characteristic features of normal mole and melanoma.

Fig. 1.6: Ten leading cancer types for the estimated new skin cancer cases and death by sex, US, 2011.

Fig. 1.7: Structure of LUT.

Fig. 1.8: Structure of OA.

Fig. 1.9: Structure of BA.

Fig. 1.10: Structure of PN.

Fig. 1.11: Structure of Vitamin D3.

Fig. 2.1: Molecular targets for skin cancer management.

Fig. 2.2: Apoptosis pathway; extrinsic and intrinsic pathway.

Fig. 2.3: Proposed cell death mechanisms in skin.
Fig. 2.4: Structure of caspase-14 with characteristic elements of caspase family, including QACRG catalytic core, large and small subunits along with short potential N-terminal prodomain region.

Fig. 2.5: Chemical structures of reported chemopreventive agents launched/in clinical trials.

Fig. 2.6: Schematic representation of melanoma cancer cells and cells which are forced to undergo terminal differentiation process by using various inducers.

Fig. 3.1: Cell lines used for the study. A) HaCaT cells B) A375 cells.

Fig. 3.2: Reduction of XTT to formazan complex.

Fig. 4.1: DPPH radical scavenging activities of LUT along with ascorbic acid equivalence (AAE).

Fig. 4.2: DPPH radical scavenging activities of OA along with ascorbic acid equivalence (AAE).

Fig. 4.3: DPPH radical scavenging activities of BA along with ascorbic acid equivalence (AAE).

Fig. 4.4: DPPH radical scavenging activities of PN along with ascorbic acid equivalence (AAE).

Fig. 4.5: Percentage Fe$^{3+}$ reducing potential of LUT along with ascorbic acid.

Fig. 4.6: Percentage Fe$^{3+}$ reducing potential of OA along with ascorbic acid.
Fig. 4.7: Percentage Fe^{3+} reducing potential of BA along with ascorbic acid.

Fig. 4.8: Percentage Fe^{3+} reducing potential of PN along with ascorbic acid.

Fig. 4.9: Dose-dependent response of LUT in HaCaT and A375 cells after 24 h of treatment.

Fig. 4.10: Dose-dependent response of OA in HaCaT and A375 cells after 24 h of treatment.

Fig. 4.11: Dose-dependent response of BA in HaCaT and A375 cells after 24 h of treatment.

Fig. 4.12: Dose-dependent response of PN in HaCaT and A375 cells after 24 h of treatment.

Fig. 4.13: DAPI staining of compounds induced nuclear fragmentation in HaCaT cells. A) Control HaCaT cells. B) Compounds treated HaCaT cells with nuclear fragments indicated in red color arrows (100X).

Fig. 4.14: DAPI staining of compounds induced nuclear fragmentation in A375 cells. A) Control HaCaT cells. B) Compounds treated A375 cells with nuclear fragments indicated in red color arrows (100X).

Fig. 4.15: Apoptosis induction potentials of LUT in HaCaT cells.

Fig. 4.16: Apoptosis induction potentials of LUT in A375 cells.

Fig. 4.17: Apoptosis induction potentials of OA in HaCaT cells.

Fig. 4.18: Apoptosis induction potentials of OA in A375 cells.

Fig. 4.19: Apoptosis induction potentials of BA in HaCaT cells.
Fig. 4.20: Apoptosis induction potentials of BA in A375 cells.

Fig. 4.21: Apoptosis induction potentials of PN in HaCaT cells.

Fig. 4.22: Apoptosis induction potentials of PN in A375 cells.

Fig. 4.23: Apoptosis induction potentials of Vincristine in HaCaT cells.

Fig. 4.24: FACS analysis of LUT induced cell cycle arrest in HaCaT cells after 24 h treatment.

Fig. 4.25: FACS analysis of LUT induced cell cycle arrest in A375 cells after 24 h treatment.

Fig. 4.26: FACS analysis of BA in HaCaT cells after 24 h treatment.

Fig. 4.27: FACS analysis of BA induced cell cycle arrest in A375 cells after 24 h treatment.

Fig. 4.28: FACS analysis of PN induced cell cycle arrest in HaCaT cells after 24 h treatment.

Fig. 4.29: FACS analysis of PN induced cell cycle arrest in A375 cells after 24 h treatment.

Fig. 4.30: Illustrates the potential of LUT to induce caspase-14 expression measured by ELISA in HaCaT and A375 cells.

Fig. 4.31: Illustrates the potential of OA to induce caspase-14 expression measured by ELISA in HaCaT and A375 cells.

Fig. 4.32: Illustrates the potential of BA to induce caspase-14 expression measured by ELISA in HaCaT and A375 cells.

Fig. 4.33: Illustrates the potential of PN to induce caspase-14 expression measured by ELISA in HaCaT and A375 cells.
Fig. 4.34: Comparison of the positive control, vitamin D₃ with LUT for caspase-14 protein expression in HaCaT cells.

Fig. 4.35: Comparison of the positive control, vitamin D₃ with LUT for caspase-14 protein expression in A375 cells.

Fig. 4.36: Qualitative analysis of caspase-14 expression by RT-PCR analysis for LUT and Vitamin D₃ (Positive control) in HaCaT cells.

Fig. 4.37: RT-PCR analysis of the human marker protein involucrin gene in LUT treated HaCaT cells.