LIST OF FIGURES

Figure 1 Standard Model of Particle Physics with 12 fermions and 5 bosons. The mass (in eV), electric charge and spin of each particle are shown at the top left, top right and bottom right corners respectively.

Figure 2 The normal (left) and inverted (right) mass hierarchy for neutrinos. The coloured bands represent the respective contributions of the flavour components in the mass eigen states.

Figure 3 Neutrino fluxes of different origins as a function of energy.

Figure 4 Schematic diagram of the ICAL detector module (16 m x 16 m x 14.5 m) with top view of the magnet coils.

Figure 5 Neutrino-induced charged current and neutral current interactions producing muon and/or hadrons.

Figure 6 Hierarchy of the trigger scheme and the signals associated with each level of trigger generation.

Figure 7 Formation of Level 0 trigger signals by combining signals from every 8th and 16th strip out of 64 pick-up strips per RPC plane.

Figure 8 Horizontal segmentation pattern for $H_{S_X} = 2$, $H_{S_Y} = 2$ with overlap between adjacent segments. Overlap along only the X direction is shown here and similar overlap exists in the Y direction as well.

Figure 9 Logical segmentation of the detector module with overlap between adjacent segments. Overlap along only the X direction is shown here and similar overlaps exist in the Y and the Z directions as well.

Figure 10 Two different sets of trigger criteria. Each set consists of multiple trigger criteria with different combinations of M and N, represented as MxN/P.
Figure 11 Diagonal track through a segment hitting RPC B in the top layer and RPC C in the bottom layer. The trigger scheme caters for such events as the T1SM signal for a particular layer of a segment is the OR of the T1M signals from all the constituent RPCs of that layer. 37

Figure 12 Complete flow of generation of the global trigger signal from the RPC strip signals through different levels of trigger generation. 40

Figure 13 Hit position information obtained from the digitization output of the INO-ICAL simulation code, in the same format as that which will be available from the detector data acquisition system. 43

Figure 14 Two-dimensional and three-dimensional display of a neutrino induced event. 44

Figure 15 Analysis algorithm to determine whether an event has satisfied the trigger criteria. 45

Figure 16 Trigger efficiency vs. energy for muon events of energy 1 to 10 GeV and incident direction \(0^\circ, 20^\circ, 40^\circ, 60^\circ, 80^\circ\). The efficiency increases with energy and comes down for larger incident angles. 46

Figure 17 Trigger efficiency vs. trigger parameters (M, N) for muon events of energy 1 GeV and incident direction \(10^\circ\). Rest of the trigger parameters are fixed as \(P = 8, H_{SX} = 2, H_{SY} = 2, V_S = 40\). The trigger efficiency for muon events is dominated by the 1-Fold and the 2-Fold criteria. 46

Figure 18 Trigger efficiency vs. trigger parameters \(P, H_{SX}, H_{SY}, V_S\) for muon events of energy 1 GeV and incident direction \(10^\circ\). The trigger efficiency is independent of these parameters. 47

Figure 19 Trigger efficiency vs. trigger parameter P for muon events of energy 1 GeV and incident direction \(10^\circ\) and for different values of detector efficiency. Rest of the trigger parameters are fixed as \(M = 1, N = 5, H_{SX} = 2, H_{SY} = 2, V_S = 40\). The variation is observed to be minimal \((-1\%)\). 47

Figure 20 Trigger efficiency vs. energy for charged current neutrino events of energy 1 to 10 GeV and incident direction \(0^\circ, 20^\circ, 40^\circ, 60^\circ, 80^\circ\). The efficiency goes up with energy and comes down for larger incident angles. 48
Trigger efficiency vs. trigger parameters \((M, N)\) for charged current neutrino events of energy 5 GeV and incident direction 10°. Rest of the trigger parameters are fixed as \(P = 8, H_{SX} = 2, H_{SY} = 2, V_S = 40\). Trigger criteria with \(M > 2\) are more significant for charged current neutrino events compared to muon events. 49

Figure 22
Trigger efficiency vs. energy for quasi-elastic neutrino events of energy 1 to 10 GeV and incident direction 0°, 20°, 40°, 60°, 80°. The efficiency is higher for higher energy and lower for larger angles of incidence. 49

Figure 23
Trigger efficiency vs. trigger parameters \((M, N)\) for quasi-elastic neutrino events of energy 5 GeV and incident direction 10°. Rest of the trigger parameters are fixed as \(P = 8, H_{SX} = 2, H_{SY} = 2, V_S = 40\). Trigger efficiency for quasi-elastic neutrino events is dominated by the 1-Fold and the 2-Fold trigger criteria. 50

Figure 24
Trigger efficiency vs. energy for resonant neutrino events of energy 1 to 10 GeV and incident direction 0°, 20°, 40°, 60°, 80°. The efficiency goes up with energy and comes down for larger incident angles. 50

Figure 25
Trigger efficiency vs. trigger parameters \((M, N)\) for resonant neutrino events of energy 5 GeV and incident direction 10°. Rest of the trigger parameters are fixed as \(P = 8, H_{SX} = 2, H_{SY} = 2, V_S = 40\). Contribution of trigger criteria with \(M > 2\) appears to be slightly higher for the resonant neutrino events than that for the quasi-elastic neutrino events. 51

Figure 26
Trigger efficiency vs. energy for deep-inelastic neutrino events of energy 2 to 10 GeV and incident direction 0°, 20°, 40°, 60°, 80°. The efficiency is higher for higher energy and lower for larger angles of incidence. 51

Figure 27
Trigger efficiency vs. trigger parameters \((M, N)\) for deep-inelastic neutrino events of energy 5 GeV and incident direction 10°. Rest of the trigger parameters are fixed as \(P = 8, H_{SX} = 2, H_{SY} = 2, V_S = 40\). Contribution of trigger criteria with \(M > 2\) is much higher for deep-inelastic neutrino events in comparison with that for quasi-elastic and resonant neutrino events. 52
Figure 28 Trigger efficiency vs. energy for reconstructed charged current neutrino events. The trigger efficiency is greater than 95% for the reconstructed events over the entire range of energy and incident direction. 53

Figure 29 The prototype detector with the front-end read-out electronics on either side. 56

Figure 30 Formation of 8 Level 0 trigger signals by combining signals from every 8th strip out of 32 pick-up strips per RPC plane. 57

Figure 31 Complete flow of generation of the final trigger signal from the RPC strip signals through different levels of trigger generation. 58

Figure 32 Schematic of the look-up table based trigger logic implemented using the block RAMs inside the FPGA. 59

Figure 33 Schematic diagram of the design of the Final Trigger Module. 60

Figure 34 Schematic of the circuit used for de glitching the coincidence signals. 61

Figure 35 Distributions of false trigger for the FTM with system operating under stable and noisy situation. 62

Figure 36 Arrangement of scintillator paddles for trigger generation in the prototype detector. There are total 9 paddles, each of dimension 96 cm x 32 cm x 1 cm, arranged in three layers. The bottom layer of paddles is placed below the bottommost RPC, the middle layer is placed on the middle (6th) RPC and the top layer is placed on the topmost RPC. The trigger signal for the data acquisition system is generated by combining the signals from the paddles. 63

Figure 37 Distributions of missed trigger for the FTM for two configurations of the paddle trigger. 65

Figure 38 Rates for coincidence signals and the final trigger signal generated by the FTM. 66

Figure 39 Layout for implementation of the ICAL trigger system and the signals associated with each level of trigger generation. 69
Figure 40 Placement of the trigger modules under Scheme A. The LTM is placed on the front as well as the back face of the detector, i.e., the faces located on opposite sides, perpendicular to the direction of the road. The GTM is placed along with the back-end system at one corner of the detector module.

Figure 41 Placement of the trigger modules under Scheme B. The LTM as well as the GTM are placed at one end of the detector, which offers the maximum physical space for positioning the trigger modules and also adapts to the structural constraints of the detector.

Figure 42 Experimental set-up to study LVDS transmission using different lengths of CAT5 cable and different input pulse widths. The input and the output signal characteristics are studied at point 1 and 2 respectively.

Figure 43 LVDS and TTL input-output pulses for a cable length of 40 m and input pulse width of 100 ns.

Figure 44 LVDS and TTL input-output pulses for a cable length of 50 m and input pulse width of 25 ns. A too narrow input pulse results in the formation of triangular pulse at the output whose rise time, determined by the cable capacitance, becomes larger than the input pulse width.

Figure 45 Input-output delay (δ) as a function of cable length (L) for input LVDS pulse width of 100 ns. The average delay per unit cable length is about 5 ns/m.

Figure 46 Variation of the input-output delay (δ) with cable length (L) for different input LVDS pulse widths.

Figure 47 Deviation (δ_r) of the input-output delay from an estimated value, assuming the average delay per unit cable length to be 5 ns/m, as a function of cable length (L) for different input LVDS pulse widths. The maximum deviation is observed to be within ±2 ns.

Figure 48 Variation of rise time (t_r) of LVDS output with cable length (L). A longer cable offers larger capacitance and hence the rise time of the output signal increases with cable length.
Figure 49 TTL input-output pulse width difference (ΔPW) as a function of cable length (L). Due to the increase in the rise time of LVDS output with cable length, the output TTL pulse becomes narrower and hence the difference goes up. 83

Figure 50 Proposed technique for delay offset calibration. 84

Figure 51 Schematic diagram of the ICAL Engineering Module (8 m x 8 m x 2 m) with top view of the magnet coils. 88

Figure 52 Three-dimensional view of the logical segmentation of the ICAL Engineering Module with overlap between adjacent segments. Overlap along only the X direction is shown here and similar overlaps exist in the Y and the Z directions as well. 89

Figure 53 Signal flow and conceptual layout of different sub-sections in the LTM. 92

Figure 54 Scheme for interconnecting and feeding input signals to the LTM. 94

Figure 55 Signal flow in the GTM. 95

Figure 56 Schematic of the LTM boards of two types, designed with a 9U (367 mm x 400 mm) form factor, showing the design components like the FPGAs, LVDS driver and fan-out chips, I/O and VME connectors. 102

Figure 57 Schematic of the GTM board designed with a 9U (367 mm x 400 mm) form factor, showing the design components like the FPGA, TDC and oscillator chips, I/O and VME connectors. 103