CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>1. Introduction</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 General</td>
<td></td>
<td>...1</td>
</tr>
<tr>
<td>1.1.1 History of self-sustaining chain reaction</td>
<td></td>
<td>...1</td>
</tr>
<tr>
<td>1.1.2 Nuclear energy for peaceful application</td>
<td></td>
<td>...2</td>
</tr>
<tr>
<td>1.2 Research Reactors</td>
<td></td>
<td>...4</td>
</tr>
<tr>
<td>1.2.1 Global scenario</td>
<td></td>
<td>...4</td>
</tr>
<tr>
<td>1.2.2 Research and test reactors in India</td>
<td></td>
<td>...8</td>
</tr>
<tr>
<td>1.3 Research reactor fuel and its development</td>
<td></td>
<td>...12</td>
</tr>
<tr>
<td>1.4 Aim of the present investigation</td>
<td></td>
<td>...17</td>
</tr>
<tr>
<td>1.5 Scope and objective of the present work</td>
<td></td>
<td>...19</td>
</tr>
<tr>
<td>1.6 Outline of the thesis</td>
<td></td>
<td>...22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>2. Literature Review</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Physical metallurgy of uranium</td>
<td></td>
<td>...25</td>
</tr>
<tr>
<td>2.1.1 Crystal structures of uranium</td>
<td></td>
<td>...25</td>
</tr>
<tr>
<td>α-uranium</td>
<td></td>
<td>...25</td>
</tr>
<tr>
<td>β-uranium</td>
<td></td>
<td>...26</td>
</tr>
<tr>
<td>γ-uranium</td>
<td></td>
<td>...26</td>
</tr>
<tr>
<td>2.1.2 Phase transformation in uranium</td>
<td></td>
<td>...26</td>
</tr>
<tr>
<td>β→α transformations</td>
<td></td>
<td>...27</td>
</tr>
<tr>
<td>γ→β transformation</td>
<td></td>
<td>...29</td>
</tr>
<tr>
<td>γ→α transformation</td>
<td></td>
<td>...29</td>
</tr>
</tbody>
</table>
2.1.3 Phase transformation in uranium alloy systems...
2.1.4 Effect of alloying on irradiation behaviour of uranium...

2.2 Some nuclear properties of uranium...
2.3 Dispersion fuel fabrication aspects...
2.4 Uranium-Silicon alloy system...
2.5 Uranium-Molybdenum alloy system...

Crystallography data of U-Mo system...

2.6 Summary of earlier studies & work carried on similar type of fuel and their reactor performance...
2.7 Research approach and methodology...

Chapter 3
3. Experimental Work & Technique...

3.1 Experimental techniques...

3.1.1 A brief account on alloy sample preparation...
3.1.2 Crucible coating...

3.2 Preparation of compound/alloy...

3.2.1 Alloying of U_3Si_2 compound by powder metallurgy route...
3.2.2 Powder metallurgy route for U-Mo alloys...
3.2.3 Induction melting route for U-Mo alloys...

3.3 Heat treatment...

3.3.1 Hot rolling of as cast U-Mo alloy ingots...
3.3.2 Quartz encapsulation and heat treatment of U-Mo alloy ingots...

3.4 Characterization...

3.4.1 Chemical analysis...
3.4.2 X-ray diffraction (XRD) analysis...
3.4.3 Metallography practice...
3.4.4 Optical microscopy...
3.4.4.1 Phase analysis...
Chapter 4: Results & Discussion

4.1 Characterization of U_3Si_2 compound prepared by powder metallurgy route
- **4.1.1 Phase analysis**
- **4.1.2 Microstructural analysis**

4.2 Characterization of U-Mo alloys prepared by powder metallurgy and melting casting routes
- **4.2.1 Phase analysis**
- **4.2.2 Microstructural analysis**

4.3 Characterization of U-Mo alloys for investigation on metastability in cubic γ-uranium
- **4.3.1 Phase analysis**
- **4.3.2 Precise lattice parameter calculation**
- **4.3.3 Microstructural analysis**
- **4.3.4 Image analysis**

4.4 Study on phase transformation of U-Mo alloys
- **4.4.1 Phase analysis**
- **4.4.2 Precise lattice parameter calculation**
- **4.4.3 Microstructural analysis**
- **4.4.4 Study on end of life prediction for U-Mo alloys**

4.5 Study on U-Mo diffusion couple

Chapter 5: Conclusions

5.1 Alloying of U_3Si_2 intermetallic by powder metallurgy route

5.2 Alloying of U-Mo by powder metallurgy & induction melting routes

5.3 Evaluation of cubic γ-phase metastability in U-Mo alloys

5.4 Phase transformation in U-Mo alloy

5.5 Experimentation on U-Mo diffusion couple
5.6 Scope for future studies

Appendix-1
Appendix-2
Appendix-3
Appendix-4

Chapter 6 6. References