CHAPTER 1

Introduction

1.1 Microstrip Antennas: Brief Overview
1.2 Microstrip Patch Antenna Theory
1.3 Feeding Techniques
 1.3.1 Edge Feed
 1.3.2 Probe Feed
 1.3.3 Aperture Coupled Feed
 1.3.4 Proximity Coupled Feed
1.4 Methods of Analysis and Mechanism of Microstrip Antennas
 1.4.1 Transmission Line Model
 1.4.2 Cavity Model
 1.4.3 Method of Moments
 1.4.4 Finite Element Method (FEM)
 1.4.5 Finite Difference Time Domain (FDTD)
1.5 Choice of Simulation Software
 1.5.1 HFSS (High Frequency Simulation Software)
 1.5.2 CST (Computer Simulation Technology)
1.6 Bandwidth Enhancement Techniques
 1.6.1 Parasitically Coupled Patches
 1.6.2 Stacked Microstrip Patches
1.7 Different Antenna Performance Parameters
 Measured
1.7.1 Radiation Pattern
1.7.2 Directivity
1.7.3 Input Impedance
1.7.4 Voltage Standing Wave Ratio (VSWR)
1.7.5 Return Loss
1.7.6 Antenna Gain
1.7.7 Bandwidth
1.8 Outline of Thesis

CHAPTER 2

Sectoral Gap Coupled Antenna Design

2.1 Introduction
2.2 General Formulations for a Circular Disc Antenna
 2.2.1 Impedance Expression for a Circular Disc Antenna
 2.2.2 Computation of Radiation Pattern
 2.2.3 Radiated Power
 2.2.4 Wall Admittance Calculation for a Circular Disc Antenna
 2.2.5 End Correction Network of a Coaxial Probe
2.3 Theoretical Calculation of a Sectoral Gap Coupled Circular Patch Antenna
2.4 Results and Discussion
 2.4.1 Return Loss measurement
 2.4.2 Input Impedance measurement
2.5 Conclusion
CHAPTER 3

Four Sectoral Gap Coupled Patch Antenna

3.1 Introduction
3.2 Theory
3.3 Antenna Configuration and Design
3.4 Results and Discussion
 3.4.1 Return Loss measurement at different gaps
 3.4.2 Input Impedance measurement at different gaps
 3.4.3 Radiation Pattern at different gaps
3.5 Conclusion

CHAPTER 4

Array of Two Sectoral Gap Coupled Patch Antenna

4.1 Introduction
4.2 Array Element Spacing and Mutual Coupling
4.3 Antenna Design
4.4 Measurements and Results
 4.4.1 S- Parameters measurements
 4.4.2 Input impedance measurements
 4.4.3 Voltage Standing Wave Ratio (VSWR) Measurements
 4.4.4 Radiation Pattern
4.5 Conclusion
CHAPTER 5

Array of Four Sectoral Gap Coupled Patch Antenna

5.1. Introduction
5.2. Theory
5.3. Sectoral Antenna Design and Configuration
5.4. Results and Discussion
 5.4.1 Using single layer with dielectric constant
 5.4.2 Using stacked structure with dielectric constant
 2.2 of the upper layer
5.5. Conclusion

CHAPTER 6

Notch Loaded Sectoral Antenna

6.1 Introduction
6.2 Antenna Design
6.3 Results and Discussion
6.4 Conclusion

CHAPTER 7

Sectoral Gap Coupled Antenna Array Using Aperture Sharing

7.1 Introduction
7.2 Antenna Design and Fuzzy Approach (FIS)
 7.2.1 Geometry of Antenna
 7.2.2 Fuzzy Inference System (FIS approach)
7.3 Simulations and Measurements
7.4 Conclusion

References

CHAPTER 8 123-126

Summary

References 127-144