Chapter :- 3
TOTAL k-DOMINATION, K-TUPLE DOMINATION AND K-DEPENDENT K-DOMINATION
In this chapter we consider the notions of total k–domination, k-tuple domination and k-dependent k-domination for graphs. (k ≥ 2) It may be noted that if a graph has a vertex of degree less than k then there does not exist a totally k-dominating set in the graph. Similarly if a graph has a vertex of degree less than k - 1 then a k-tuple dominating set does not exist. In this chapter we consider and characterize those vertices whose removal increases or decreases total k-domination number of the graph. We prove similar result for k-tuple domination and k-dependent k-domination.

TOTAL k-DOMINATION

In this section we introduced a totally k-dominating sets. We prove theorems similar to those of domination.

Definition-3.1: Totally k-dominating set.

Let k be an integer k ≥ 1. Let G be a graph and S ⊂ V(G). The set S is said to be totally k-dominating set if for every vertex v ∈ V(G), v is adjacent to at least k vertices of S.

Note that every totally k–dominating set is a k-dominating set. However the converse is not true.

Example-3.2:

Consider the above graph G with vertices 1, 2, 3, 4. Let S = {1, 3} if k = 2 then S is a 2–dominating set but it is not a totally 2–dominating set.
Chapter-3 : Total k-Domination and k-tuple Domination and k-dependent k-Domination

Remark-3.3:
Note that if a graph G contains a vertex v with degree less than k then no subset of V(G) can be totally k-dominating set. (Although it may be k-dominating set.)
k-dominating set: A set S is k-dominating set if for every vertex v ∈ V(G) - S, v is adjacent to at least k vertices of S. i.e. |N(v) ∩ S| ≥ k.

Definition -3.4: Minimal totally k-dominating set.
Let S be a totally k-dominating set then S is said to be minimal totally k-dominating set if for every vertex v in S, S-{v} is not a totally k-dominating set.

Definition -3.5: Minimum totally k-dominating set.
A totally k-dominating set with minimum cardinality is called a minimum totally k-dominating set. It is called a \(\gamma_{Tk}\) set.

Definition-3.6: Total k-Domination Number.
The cardinality of a minimum totally k-dominating set is called total k-domination number of the graph G and it is denoted as \(\gamma_{Tk}(G)\).

Note that any totally k-dominating set must contain at least k+1 vertices therefore total k-domination number of any graph, if it is define is greater than or equal to k+1.

Definition -3.7: Total k-private neighborhood.
Let G be a graph and S ⊂ V(G) and v ∈ S then total k-private neighborhood of v with respect to the set S.
\[P_{Tk}[v,S] = \{ w ∈ V(G) : w \text{ is adjacent to exactly } k \text{ vertices of } S \text{ including } v. \} \]

Example -3.8: Consider the cycle \(C_5\) with five vertices \(v_1, v_2, v_3, v_4, v_5\):
(See Figure-0.2)
\[S = \{ v_1, v_3, v_4 \}. \text{ We consider the cycle } C_5 \text{ with vertices } v_1, v_2, v_3, v_4, v_5. \text{ Let } v = v_1 \text{ then } P_{T2}[v_1, S] = \{ v_2, v_5 \}\]
Theorem 3.9: Let G be a graph. $k \geq 1$ (k is a positive integer.) A totally k-dominating set S is minimal if and only if for every vertex v of S, $P_{Tk}[v,S] \neq \emptyset$.

Proof:

Suppose S is a minimal totally k-dominating set. Let $v \in S$ then $S \setminus \{v\}$ is not a totally k-dominating set. Hence there is a vertex w in $V(G)$ which is adjacent to at most $k-1$ vertices of $S \setminus \{v\}$.

If $w = v$ then we have a contradiction because v is adjacent to at least k vertices of S. So, $w \neq v$.

Now w is adjacent to at least k vertices of S and is adjacent to at most $k-1$ vertices of $S \setminus \{v\}$. This means that w is adjacent to exactly k vertices of S including v. Hence $w \in P_{Tk}[v,S]$.

Now we prove converse.

Suppose $v \in S$. Let $w \in P_{Tk}[v,S]$. Now w is adjacent to exactly k vertices of S including v therefore w is adjacent to $k-1$ vertices of $S \setminus \{v\}$. i.e. $S \setminus \{v\}$ is not a totally k-dominating set. This implies that S is a minimal totally k-dominating set.

Comments 3.10:

As we have noted earlier a graph having vertices with degree less than k can not have totally k-dominating set. Also it may happen that when a vertex is removed the resulting graph may have vertices having degree less than k.

Let G be a graph. Let I_k denote the set of vertices whose degree is less than k.

74
Chapter-3 : Total k-Domination and k-tuple Domination and k-dependent k-Domination

Notations: We define the following notations.

\[V^l_{Tk} : \{ v \in V(G) : G-\{v\} \text{ has vertex of degree less than } k \text{ in } (G-\{v\}) \} \]

\[V^+_{Tk} : \{ v \in V(G) : \gamma_{Tk}(G-v) > \gamma_{Tk}(G) \} \]

\[V^-_{Tk} : \{ v \in V(G) : \gamma_{Tk}(G-v) < \gamma_{Tk}(G) \} \]

\[V^0_{Tk} : \{ v \in V(G) : \gamma_{Tk}(G-v) = \gamma_{Tk}(G) \} \]

Theorem -3.11: Let \(v \in V(G) \) such that \(d(v) \geq k \) and \(v \notin V^l_{Tk} \). If \(v \in V^-_{Tk} \) then
\[\gamma_{Tk}(G)-k \leq \gamma_{Tk}(G-v) \leq \gamma_{Tk}(G)-1. \]

Proof:

Let \(S_1 \) be a minimum totally k-dominating set of \(G-\{v\} \). Since \(v \in V^-_{Tk} \), \[|S_1| < \gamma_{Tk}(G) \] and \(v \) is adjacent to at most \(k-1 \) vertices of \(S_1 \). Suppose \(v \) is not adjacent to any vertex of \(S_1 \). Let \(z_1, z_2, \ldots, z_k \) be \(k \) neighbor of \(v \).

Let \(S = S_1 \cup \{ z_1, z_2, \ldots, z_k \} \), then \(S \) is a totally \(k \)-dominating set in \(G \). Therefore \[\gamma_{Tk}(G) \leq |S| = |S_1| + k = \gamma_{Tk}(G-v) + k. \] Therefore \[\gamma_{Tk}(G) - k \leq \gamma_{Tk}(G-v). \]

If \(v \) is adjacent to \(m \) vertices say \(z_1, z_2, \ldots, z_m \) (\(m < k \)). Let \(z_{m+1}, z_{m+2}, \ldots, z_k \) be the vertices adjacent to \(v \) and not in \(S_1 \).

Let \(S = S_1 \cup \{ z_{m+1}, z_{m+2}, \ldots, z_k \} \), then as above \(S \) is a totally \(k \)-dominating set in \(G \) and by similar argument \[\gamma_{Tk}(G) - k \leq \gamma_{Tk}(G) - (k-m) \leq \gamma_{Tk}(G-v). \]

Thus in both the cases the inequality holds. ■
Theorem 3.12: Suppose $v \in V(G)$, $d(v) \geq k$ and $v \not\in V_k^i$ then $v \in V_k^+$ if and only if the following conditions hold.

(1) v is contained in every γ_k set of G.

(2) No subset S of $V(G)$ which intersects $N[v]$ in at most $k-1$ vertices of $N[v]$ and with $|S| \leq \gamma_k(G)$ can be a totally k-dominating set of $G-\{v\}$.

Proof:

(1) Suppose $v \in V_k^+$. Suppose S_0 is a γ_k of G such that $v \not\in S_0$. Let v_1 be any vertex of $G-\{v\}$. Since $v \not\in V_k^i$, $d(v_1) \geq k$ in $G-\{v\}$ and hence G also. Thus, v_1 is adjacent to at least k vertices of S_0. Thus, S_0 is a totally k-dominating set of $G-\{v\}$. Thus, $\gamma_k(G-v) \leq |S_0| = \gamma_k(G)$. That is $v \not\in V_k^+$, a contradiction.

(2) Suppose there is a set S_0 which intersects $N[v]$ in at most $k-1$ vertices, and $|S_0| \leq \gamma_k(G)$ and S_0 is a totally k-dominating set of $G-\{v\}$. Then $\gamma_k(G-v) \leq |S_0| \leq \gamma_k(G)$. This is again a contradiction. Therefore condition (2) holds.

Now we prove converse.

Suppose $v \in V_k^i$. Let S be a minimum totally k-dominating set of $G-\{v\}$. If v is adjacent to at least k vertices of S then S is a minimum totally k-dominating set of G not containing v, which contradict (1).

Suppose v is adjacent to m vertices of S where $0 \leq m < k$. Then S is a set which intersects $N[v]$ in at most $k-1$ vertices, $|S| \leq \gamma_k(G)$ and S is a totally k-dominating set of $G-\{v\}$ which contradicts (2).

Suppose $v \in V_k^-$. Then $\gamma_k(G)-k \leq \gamma_k(G-v) \leq \gamma_k(G)-1$.

Let S be a minimum totally k-dominating set of $G-\{v\}$. If v is adjacent to at least k vertices of S then S is a totally k-dominating set of G with $|S| < \gamma_k(G)$. That is
Chapter-3 : Total k-Domination and k-tuple Domination and k-dependent k-Domination

$\gamma_{Tk}(G) < \gamma_{Tk}(G)$ - a contradiction. So v is adjacent to at most $k-1$ vertices of S then also S is a set which intersects $N[v]$ in at most $k-1$ vertices and $|S| \leq \gamma_{Tk}(G)$ is a totally k-dominating set of $G-\{v\}$, which contradicts (2).

Thus, v can not be in V_{Tk} or V_{Tk}^0. Hence $v \in V_{Tk}^+$

Next we prove the following theorem.

Theorem -3.13: Suppose $d(v) \geq k$ and $v \in V_{Tk}^+$. Then for any γ_{Tk} set S, $v \in S$ and $P_{Tk}[v,S]$ contains at least two vertices.

Proof:

Let S be any γ_{Tk} set of G. Since $v \in V_{Tk}^+$, $v \in S$. Since S is a minimum set, $P_{Tk}[v,S]$ contains at least one vertex.

Suppose $P_{Tk}[v,S]$ contains only one vertex say w.

Claim: $w \notin S$.

Proof of the Claim: Suppose $w \in S$. If w is not adjacent to any vertex outside S then $d(w) < k$ in $G-\{v\}$ which contradicts that $v \in V_{Tk}^+$. Thus, there is a vertex w_1 outside S which is adjacent to w.

Now let $S_1 = S - \{v\} \cup \{w_1\}$. Then S_1 is a minimum totally k-dominating set of G not containing v, which contradicts that $v \in V_{Tk}^+$.

This proves that $w \notin S$. Since $d(w) \geq k$, in $G-\{v\}$, w is adjacent to some vertex w_1 which is outside S.

Now let $S_1 = S - \{v\} \cup \{w_1\}$. Then S_1 is a minimum totally k-dominating set of G not containing v, which is a contradiction.

Thus, in any case we get a contradiction. Hence $P_{Tk}[v,S]$ contains at least two vertices.
Theorem 3.14: Let \(v \) be a vertex of \(G \) such that \(d(v) \geq k \) and \(v \notin V_{Tk} \). Then
\(v \in V_{Tk} \) if and only if there is a minimum totally k-dominating set \(S \) and \(k \) vertices \(w_1, w_2, \ldots, w_k \) in \(S \) such that \(P_{Tk}[w_i, S] = \{v\} \) for every \(i \).

Proof:
Suppose \(v \in V_{Tk} \). Let \(S_1 \) be a minimum totally k-dominating set of \(G-\{v\} \).

If \(v \) is not adjacent to any vertex of \(S_1 \) then let \(w_1, w_2, \ldots, w_k \) be \(k \) vertices adjacent to \(v \). Let \(S = S_1 \cup \{ w_1, w_2, \ldots, w_k \} \) then \(S \) is a minimum totally k-dominating set of \(G \). For each \(i \) \(v \) is adjacent to exactly \(k \) vertices of \(S \) including \(w_i \) (other vertices to which \(v \) is adjacent are \(w_1, w_2, \ldots, w_{i-1}, w_{i+1}, \ldots, w_k \)). Thus, \(v \in P_{Tk}[w_i, S] \) for every \(i \).

Let \(v_1 \) be a vertex different from \(v \). Since \(S_1 \) is a totally k-dominating set of \(G-\{v\} \), \(v_1 \) is adjacent to at least \(k \)-vertices of \(S_1 \) and no \(w_j \) is member of \(S_1 \). Therefore \(v_1 \notin P_{Tk}[w_i, S] \).

Hence \(P_{Tk}[w_i, S] = \{v\} \) for each \(i \).

To prove converse suppose \(S \) is a minimum totally k-dominating set of \(G \) and \(w_1, w_2, \ldots, w_k \) are vertices of \(S \) such that \(P_{Tk}[w_i, S] = \{v\} \) for every \(i \).

Let \(S_1 = S-\{w_1\} \). We will prove that \(S_1 \) is a totally k-dominating set of \(G-\{v\} \). Let \(z \) be any vertex of \(G-\{v\} \). First suppose that \(z = w_1 \). Since \(S \) is a totally k-dominating set in \(G \), \(z = w_1 \) is adjacent to at least \(k \) vertices of \(S_1 \).

Suppose \(z \neq w_1 \). Since \(z \neq v \), \(z \notin P_{Tk}[w_i, S] \). Hence if \(z \) is adjacent to \(w_1 \) in \(G \) then \(z \) must be adjacent to at least \(k \) other vertices of \(S \). This means that \(z \) is adjacent to at least \(k \) vertices of \(S_1 \). If \(z \) is not adjacent to \(w_1 \) then since \(S \) is a totally k-dominating set of \(G \), \(z \) is adjacent to at least \(k \) vertices of \(S_1 \).

Thus in any case \(z \) is adjacent to at least \(k \) vertices of \(S_1 \). This proves that \(S_1 \) is a totally k-dominating set of \(G-\{v\} \) and hence \(\gamma_{Tk}(G-v) \leq |S_1| < |S| = \gamma_{Tk}(G) \). This means that \(v \in V_{Tk} \).
Corollary -3.15: Suppose v is a vertex in V^+_Tk and w is a vertex in V^-Tk then v and w are non adjacent.

Proof:
There is a minimum totally k-dominating set S and k vertices w_1, w_2, \ldots, w_k in S such that $P_{Tk}[w_i, S] = \{w\}$ for each i. Since $v \in V^+_Tk$, $v \in S$. (Theorem -3.3). Note that $v \neq w_i$ for any i, because $P_{Tk}[v, S]$ contains at least two vertices while $P_{Tk}[w_i, S]$ contains only w. Now if v and w are adjacent then w is adjacent to $k+1$ vertices of S including w_1, which contradicts the fact that $P_{Tk}[w_1, S] = \{w\}$. Thus, v and w can not be adjacent. ■

K-TUPLE DOMINATION

The concept of k-tuple domination can be found in [44]. Note that every totally k-dominating set is a k-tuple dominating set but converse is not true. We begin with the definition of a k-tuple dominating set.

Definition -3.16: k-tuple dominating set. [44]

Let G be a graph and k be an integer greater than or equal to two. A subset S of $V(G)$ is said to be a k-tuple dominating set if following conditions satisfied.

1. If $v \in S$ then v is adjacent to at least $k-1$ vertices of S.
2. If $v \notin S$ then v is adjacent to at least k vertices of S.

Definition -3.17: Minimal k-tuple dominating set.

A k-tuple dominating set S of G is said to be a minimal k-tuple dominating set if for each vertex v of S, $S-\{v\}$ is not a k-tuple dominating set.

Definition -3.18: Minimum k-tuple dominating set.

A k-tuple dominating set with minimum cardinality is called minimum k-tuple dominating set which also called γ_{ku} set of G.
Definition -3.19: k-tuple domination number.

The cardinality of a minimum k-tuple dominating set is called k-tuple domination number of the graph G. It is denoted by $\gamma_{ku}(G)$.

Remark-3.20: Note that any minimum totally k-dominating set is a k-tuple dominating set, but converse is not true. This means that $\gamma_{ku}(G) \leq \gamma_{Tk}(G)$.

Example -3.21: Consider the cycle C_5 with vertices v_1, v_2, v_3, v_4, v_5. Let $k=2$ then 2-tuple domination number of C_5 is 4 and total 2-domination number is 5. (See Figure –0.2)

Now we define so called k-tuple private neighborhood of a vertex v with respect to a set containing it.

Definition -3.22: k-tuple private neighborhood.

Let S be a subset of V(G) and $v \in S$. Then the k-tuple private neighborhood of v with respect to S. i.e. $P_{ku}[v,S] = S_1 \cup S_2 \cup S_3$

Where $S_1 = \{ w \in S: w \neq v \text{ and } w \text{ is adjacent to exactly } k-1 \text{ vertices of } S \text{ including } v \}$,
$S_2 = \{ w \in S: w = v \text{ and } w \text{ is adjacent to exactly } k-1 \text{ vertices of } S \}$,
$S_3 = \{ w \notin S: w \text{ is adjacent to exactly } k \text{ vertices of } S \text{ including } v \}$

For example if we consider the cycle graph C_5, (See Figure –0.2)

$S = \{ v_1, v_2, v_3, v_4 \}$, $v = v_1$ then $P_{ku}[v_1, S] = \{ v_1, v_3 \}$.

Note that in the above definition any one of S_1, S_2, S_3 can be an empty set.

Also note that every minimum k-tuple dominating set is a minimal k-tuple dominating set.

We state the following theorem without proof as it is similar to that of Theorem -3.9
Chapter-3 : Total k-Domination and k-tuple Domination and k-dependent k-Domination

Theorem-3.23: A subset S of $V(G)$ is a minimal k-tuple dominating set if and only if for each vertex v of S $P_{ku}[v,S] \neq \emptyset$. □

Now we introduced the following symbols.

$$V^{+}_{ku} = \{ v \in V(G): \gamma_{ku}(G-v) > \gamma_{ku}(G) \}.$$

$$V^{-}_{ku} = \{ v \in V(G): \gamma_{ku}(G-v) < \gamma_{ku}(G) \}.$$

$$V^{0}_{ku} = \{ v \in V(G): \gamma_{ku}(G-v) = \gamma_{ku}(G) \}.$$

Theorem-3.24: Let $v \in V(G)$ such that $d(v) \geq k$ and $v \notin V^{+}_{Tk}$. Then $v \in V^{-}_{ku}$ if and only if $\gamma_{ku}(G) - k \leq \gamma_{ku}(G-v) < \gamma_{ku}(G)$.

Proof:

Suppose $v \in V^{-}_{ku}$. Let S_1 be a minimum k-tuple dominating set of $G-\{v\}$. Obviously v is adjacent to at most $k-1$ vertices of S_1.

If v is adjacent to exactly $k-1$ vertices of S_1 and in this case let $S = S_1 \cup \{v\}$. Then S is a minimum k-tuple dominating set of G and $|S| = |S_1| + 1$. This means that $\gamma_{ku}(G-v) = \gamma_{ku}(G) - 1$.

If v is adjacent to no vertex of S_1 then let w_1, w_2, \ldots, w_k be vertices adjacent to v. Let $S = S_1 \cup \{w_1, w_2, \ldots, w_k\}$, then S is a k-tuple dominating set of G. Therefore $\gamma_{ku}(G) \leq |S| = |S_1| + k = \gamma_{ku}(G-v) + k$. This proves that $\gamma_{ku}(G) - k \leq \gamma_{ku}(G-v) < \gamma_{ku}(G)$.

Suppose v is adjacent to m vertices of S_1 say w_1, w_2, \ldots, w_m ($1 \leq m < k$). Let $w_{m+1}, w_{m+2}, \ldots, w_k$ be vertices adjacent to v and not in S_1. Let $S = S_1 \cup \{w_{m+1}, w_{m+2}, \ldots, w_k\}$. Then S is a k-tuple dominating set of G and $|S| = |S_1| + k$. Therefore $\gamma_{ku}(G) \leq \gamma_{ku}(G-v) + k - m < \gamma_{ku}(G-v) + k$.

Hence $\gamma_{ku}(G) - k \leq \gamma_{ku}(G-v) < \gamma_{ku}(G)$.

This proves the theorem. □
We state the following theorem without proof as it is similar to that of Theorem-3.12

Theorem-3.25: Let \(v \in V(G) \) such that \(d(v) \geq k \) and \(v \not\in V^i_{Tk} \). Then \(v \in V^+_{ku} \) if and only if each of the following two conditions is satisfied.

1. \(v \) is contained in every minimum \(k \)-tuple dominating set.
2. No subset \(S \) of \(V(G-v) \) which intersects \(N[v] \) in at most \(k-1 \) vertices and with
 \[
 |S| \leq \gamma_{ku}(G)
 \]
 can be a tuple dominating set of \(G-\{v\} \).

Theorem-3.26: Let \(v \in V(G) \) such that \(d(v) \geq k \) and \(v \not\in V^i_{Tk} \). If \(v \in V^+_{ku} \) and \(S \) is a minimum \(k \)-tuple dominating set then \(v \in S \) and \(P_{ku}[v,S] \) contains at least two vertices.

Proof:

By Theorem-3.23, \(v \in S \). Since \(S \) is a minimal \(k \)-tuple dominating set, \(P_{ku}[v,S] \) is non-empty.

First suppose that \(P_{ku}[v,S] \) consists only one vertex \(w \).

Let \(w \in P_{ku}[v,S] \). If \(w = v \) then \(S-\{v\} \) is a \(k \)-tuple dominating set of \(G-\{v\} \). This means that \(v \in V^+_{ku} \) and this is a contradiction. If \(w \neq v \) then there are two cases:

Case-1:

\(w \in S \). Then \(w \) is adjacent to exactly \(k-1 \) vertices including \(v \) of \(S \). Since \(d(w) \geq k \), there is a vertex \(w_1 \) outside \(S \) which is adjacent to \(w \). Let \(S_1 = S-\{v\}U\{w_1\} \), then \(S_1 \) is a minimum \(k \)-tuple dominating set of \(G \) not containing \(v \). This contradicts the assumption that \(v \in V^+_{ku} \).

Case-2:

\(w \not\in S \). Let \(S_1 = S-\{v\}U\{w\} \), then \(S_1 \) is a minimum \(k \)-tuple dominating set of \(G \) not containing \(v \), which is again a contradiction as \(v \in V^+_{ku} \).

Thus, the assumption that the \(P_{ku}[v, S] \) contains only one vertex leads to a contradiction. Therefore it must contain at least two vertices.
Example-3.27: Consider the following graph to understand for the Theorem-3.26.

\[
\gamma_{2u} = \{2,3,4,5\} \quad \text{and} \quad k = 2, \quad (G) = 4.5 \in V^+_{k_d} \text{, Now for the graph } G - \{5\} \\
\gamma_{2u} = \{2,3,4,6,7\} = S, \quad \text{and} \quad k = 2, \quad \text{So, } P_{2u}[5,S] = \{6,7\}
\]

\[
\gamma_{2u} = \{2,3,4,6,7\} = S, \quad \text{and} \quad k = 2, \quad \text{So, } P_{2u}[5,S] = \{6,7\}
\]
Theorem-3.28: Let \(v \in V(G) \), \(d(v) \geq k \), and \(v \notin V^i_{Tk} \),

1. If \(v \in V_ku \) then there is a minimal \(k \)-tuple dominating set \(S \) containing \(v \) such that \(P_{ku}[v,S] = \{v\} \).

2. If there is a minimum \(k \)-tuple dominating set \(S \) containing \(v \) such that \(P_{ku}[v,S] = \{v\} \) then \(v \in V_ku \).

Proof: (1)

Suppose \(v \in V_ku \). Let \(S_1 \) is a minimum \(k \)-tuple dominating set of \(G-\{v\} \). Then \(v \) is adjacent to at most \(k-1 \) vertices of \(S_1 \).

Case-1: \(v \) is adjacent to no vertex of \(S_1 \).

Let \(w_1, w_2, \ldots, w_{k-1} \) be vertices not in \(S_1 \) such that \(w_i \) is adjacent to \(v \) for every \(i \). Let \(S = S_1 \cup \{ w_1, w_2, \ldots, w_{k-1}, v \} \). Then \(S \) is a minimal \(k \)-tuple dominating set of \(G \) containing \(v \).

Suppose \(v_1 \) is a vertex different from \(v \).

If \(v_1 \in S_1 \) then \(v_1 \) is adjacent to at least \(k-1 \) vertices of \(S_1 \). Thus, if \(v_1 \) is adjacent to \(v \) then \(v_1 \) is adjacent to at least \(k \) vertices of \(S \). Therefore \(v_1 \notin P_{ku}[v,S] \).

Suppose \(v_1 = w_i \) for some \(i \). Now \(w_i \notin S_1 \) and therefore \(w_i \) is adjacent to at least \(k \) vertices of \(S_1 \). Therefore if \(w_i \) is adjacent to \(v \) then \(w_i \) is adjacent to \(k+1 \) vertices of \(S \). Therefore \(w_i \notin P_{ku}[v,S] \).

Suppose \(v_1 \notin S \) then \(v_1 \) is adjacent to at least \(k \) vertices of \(S_1 \) therefore if \(v_1 \) is adjacent to \(v \) then \(v_1 \) is adjacent to \(k+1 \) vertices of \(S \). Therefore \(v_1 \notin P_{ku}[v,S] \).

Case-2: \(v \) is adjacent to \(m \) vertices \(w_1, w_2, \ldots, w_m \) of \(S_1 \) where \(1 \leq m < k \)

Let \(w_{m+1}, w_{m+2}, \ldots, w_{k-1} \) be vertices not in \(S_1 \) and adjacent to \(v \). Let \(S = S_1 \cup \{ w_{m+1}, w_{m+2}, \ldots, w_{k-1}, v \} \) then \(S \) is a minimal \(k \)-tuple dominating set of \(G \) containing \(v \).
Let v_1 be a vertex different from v.

If $v_1 = w_i$ for some $i \in \{1, 2, 3, \ldots, m\}$ then if w_i is adjacent to exactly $k-1$ vertices of S_1 then w_i is adjacent to k vertices of S if w_i is adjacent to v. Therefore $v_1 = w_i \not\in P_{ku}[v, S]$.

If $v_1 = w_i$ for some $i \in \{m+1, m+2, \ldots, k-1\}$ then since w_i is adjacent to at least k vertices of S_1, w_i is adjacent to at least $k+1$ vertices of S, if w_i is adjacent to v. Therefore $w_i \not\in P_{ku}[v, S]$.

Case-3: v is adjacent to exactly $k-1$ vertices of S_1.

Let $S = S_1 \cup \{v\}$, then S is a minimal k-tuple dominating set of G containing v. Let v_1 be a vertex different from v.

If $v_1 = w_i$ for some i, then since w_i is adjacent to at least $k-1$ vertices of S_1, w_i is adjacent to at least k vertices of S including v, if w_i is adjacent to v. Therefore $v_1 = w_i \not\in P_{ku}[v, S]$.

If $v_1 \in S_1$ then v_1 is adjacent to at least $k-1$ vertices of S_1. Therefore v_1 is adjacent to at least k vertices of S if v_1 is adjacent to v. Therefore $v_1 \not\in P_{ku}[v, S]$.

If $v_1 \not\in S_1$ then v_1 is adjacent to at least k vertices of S_1 and therefore adjacent to at least $k+1$ vertices of S if v_1 is adjacent to v. Therefore $v_1 \not\in P_{ku}[v, S]$.

Note that $v \in P_{ku}[v, S]$. Hence $P_{ku}[v, S] = \{v\}$.

(2)

Suppose there is a minimum k-tuple dominating set S of G containing v such that $P_{ku}[v, S] = \{v\}$.

Let $S_1 = S-\{v\}$. We will prove that S_1 is a k-tuple dominating set of $G-\{v\}$.
Let v_1 be any vertex of $G - \{v\}$.

Case-1: $v_1 \in S_1$.

Since S is a k-tuple dominating set of G, v_1 is adjacent to at least $k-1$ vertices of S. Suppose v_1 is adjacent to v in G and v_1 is adjacent to exactly $k-1$ vertices of S then v_1 is not adjacent to v and $v_1 \in P_{ku}[v,S]$ which is not true. Since $P_{ku}[v,S] = \{v\}$. Therefore if v_1 is adjacent to v. Then v_1 is adjacent to at least $k-1$ other vertices of S. Thus, v_1 is adjacent to at least $k-1$ vertices of $S_1 = S - \{v\}$. If v_1 is not adjacent to v then v_1 is adjacent to at least $k-1$ vertices of S different from v. Therefore v_1 is adjacent to at least $k-1$ vertices of S_1.

Suppose $v_1 \notin S_1$. Now $v_1 \neq v$. Therefore $v_1 \notin S$. Now since S is a k-tuple dominating set of G, v_1 is adjacent to at least k vertices of S different from v. Therefore v_1 is adjacent to at least k vertices of S_1. Thus, S_1 is a k-tuple dominating set of $G - \{v\}$. Therefore,

$$\gamma_{ku}(G-v) \leq |S_1| < |S| \leq \gamma_{ku}(G)$$

Therefore,

$$\gamma_{ku}(G-v) < \gamma_{ku}(G)$$

Therefore,

$$v \in V_{ku}$$

The following definition of k-dependent set is due to J. F. Fink and M.S. Jacobson [21].

K-DEPENDENT K-DOMINATION

Definition -3.29: k-dependent set.[21]
Suppose \(k \geq 1 \). A set \(S \) subset of \(V(G) \) is said to be k-dependent set if for every vertex \(v \) in \(S \), \(v \) is adjacent to at most \(k-1 \) vertices of \(S \).
Note that if \(k=1 \) then 1-dependent set is just an independent set.

Definition -3.30: Maximal k-dependent set.
Let \(k \geq 1 \) and \(S \) be a subset of \(V(G) \). Then \(S \) is said to be a maximal k-dependent set if
(1) \(S \) is a k-dependent set.
(2) For every vertex \(v \) not in \(S \), \(S \cup \{v\} \) is not a k-dependent set.

Note that every maximum k-dependent set is a maximal k-dependent set.

If \(S \) is a maximal k-dependent set then obviously for every vertex \(v \) not in \(S \) \(v \) is adjacent to at least \(k \) vertices of \(S \). Thus, \(S \) is a k-dominating set. Hence every maximal k-dependent set is a k-dominating set.

Also if \(S \) is a k-dependent set and \(v \in S \) then \(v \) is adjacent to at most \(k-1 \) vertices of \(S \). Therefore \(v \) belongs to private k-neighborhood of \(v \) with respect to \(S \), which is denoted as \(P_k[v,S] \). That is \(P_k[v,S] \) is non empty.

Therefore \(S \) is a minimal k-dominating set of \(G \). [2] Thus, every maximal k-dependent set is a minimal k-dominating set.
Definition -3.31: k-dependent k-dominating set.

Let $k \geq 1$ and S is subset of $V(G)$. Then S is said to be k-dependent k-dominating set if

1. S is a k-dependent set.
2. S is a k-dominating set.

Definition -3.32: Minimal k-dependent k-dominating set.

Let S be a k-dependent k-dominating set then S is said to be minimal k-dependent k-dominating set if for each vertex $v \in S$, $S \setminus \{v\}$ is not a (k-dependent) k-dominating set.

Definition -3.33: Minimum k-dependent k-dominating set.

A k-dependent k-dominating set S with minimum cardinality is called a minimum k-dependent k-dominating set. It is denoted by i_k set.

Definition -3.34: k-dependent k-domination number.

The cardinality of a minimum k-dependent k-dominating set is called k-dependent k-domination number of the graph G. It is denoted as $i_k(G)$.

Thus, by above remark every maximal k-dependent set is a minimal k-dependent k-dominating set.

Conserve is also true. That is every minimal k-dependent k-dominating set is also a maximal k-dependent set.

Thus, the minimum cardinality of a k-dependent k-dominating set = the minimum cardinality of a maximal k-dependent set. That is $i_k(G)$.
We define the following symbols.

\[V^+_{Ik} = \{ v \in V(G) : \gamma_{Ik}(G) < \gamma_{Ik}(G-v) \} \]

\[V^-_{Ik} = \{ v \in V(G) : \gamma_{Ik}(G) > \gamma_{Ik}(G-v) \} \]

\[V^0_{Ik} = \{ v \in V(G) : \gamma_{Ik}(G) = \gamma_{Ik}(G-v) \} \]

\[V^i_{Tk} = \{ G-{v} has a vertex which degree is less than k. \} \]

Note that the above sets are mutually disjoint and their union is \(V(G) \).

We state the following theorem without proof.

Theorem-3.35: Let \(v \in V(G) \), \(d(v) \geq k \) and \(v \notin V^i_{Tk} \) then \(v \in V^+_{Ik} \) if and only if the following conditions holds.

1. \(v \) belongs to every minimum \(k \)-dependent \(k \)-dominating set of \(G \).
2. No subset \(S \) of \(G-{v} \) which intersects \(N[v] \) in at most \(k-1 \) vertices and \(|S| \leq i_k(G) \) can be a \(k \)-dependent \(k \)-dominating set of \(G-{v} \).

Proof: The proof of this theorem is similar to that of corresponding theorem for total \(k \)-domination.

Example-3.36:

1. **Consider the graph \(G = Petersen Graph \) (See Figure- 0.3)**
 For the Petersen Graph \(i_3 \) set is \(\{2, 4, 6, 7, 9, 10\} \) and \(i_3(G) = 6 \).
 and \(i_2 \) set is \(\{1, 3, 6, 9, 10\} \) and \(i_2(G) = 5 \).

2. **Consider the graph \(G = Hyper Qube \) (See Figure – 0.8)**
 For the Hyper Qube Graph \(i_3 \) set is \(\{2, 3, 4, 5, 6, 8\} \) and \(i_3(G) = 6 \).
 and \(i_2 \) set is \(\{2, 4, 6, 8\} \) and \(i_2(G) = 4 \).
Definition -3.37: External private k-neighborhood.

Let S be a subset of $V(G)$ and $v \in S$, then the external private k-neighborhood of v with respect to S, i.e $E_x[v,S]$

$$E_x[v,S] = \{w \in V(G)-S : \text{w is adjacent to exactly k vertices of S including v.} \}$$

Now we state and prove the equivalent conditions for vertex v to be in V_{i_k}.

Theorem-3.38: Let $v \in V(G)$, $d(v) \geq k$, and $v \notin V_{i_k}$ then the following statements are equivalent.

1. $v \in V_{i_k}$.
2. There is a minimum k-dependent k-dominating set S containing v such that $E_{sk}[v,S]$ is empty.
3. There is a minimum k-dependent k-dominating set S of G containing v such that $S-\{v\}$ is a k-dependent k-dominating set of $G-\{v\}$.

Proof:

(1) \Rightarrow (2)

Let S_1 be a k-dependent k-dominating set of $G-\{v\}$. Then $|S_1| < i_k(G)$. If v is adjacent to at least k vertices of S_1 then S_1 is a k-dependent k-dominating set of G and therefore $i_k(G) \leq |S_1| < i_k(G)$. This is a contradiction. Therefore v is adjacent to at most $k-1$ vertices of S_1.

Let $S = S_1 \cup \{v\}$ then S is a minimum k-dependent k-dominating set of G containing v.

Suppose $w \in E_{sk}[v,S]$ then w is adjacent to exactly k-vertices of S including v therefore w is a vertex of $G-\{v\}$ such that $w \notin S_1$ and w is adjacent to exactly $k-1$ vertices of S_1. This is a contradiction because S_1 is a maximal k-dependent set in $G-\{v\}$. Therefore $E_{sk}[v,S]$ is empty. Hence (1) \Rightarrow (2) is proved.
Chapter-3 : Total k-Domination and k-tuple Domination and k-dependent k-Domination

Now (2) \Rightarrow (3).

Let S be a minimum k-dependent k-dominating set of G containing v such that $E_{sk}[v,S]$ is empty.

Consider the set $S_1 = S \setminus \{v\}$. We prove that S_1 is a k-dependent k-dominating set of $G \setminus \{v\}$.

Let w be a vertex of $G \setminus \{v\}$ such that $w \notin S \setminus \{v\}$. Then w is a vertex of G with $w \notin S$. If w is adjacent to v in G then w must be adjacent to at least k other vertices of S (because $w \notin E_{sk}[v,S]$). Therefore w is adjacent to at least k vertices of $S \setminus \{v\}$.

Since S is a k-dependent set in G, $S \setminus \{v\}$ is also k-dependent set in $G \setminus \{v\}$. Thus, $S \setminus \{v\}$ is a k-dependent k-dominating set of $G \setminus \{v\}$. Hence (2) \Rightarrow (3) is proved.

Now (3) \Rightarrow (1)

Let S be a minimum k-dependent k-dominating set of G containing v such that $S \setminus \{v\}$ is a k-dependent k-dominating set of $G \setminus \{v\}$. Then

$$i_k(G-v) \leq |S \setminus \{v\}| < |S| = i_k(G)$$

Therefore,

$$i_k(G-v) < i_k(G).$$

Hence $v \in V_{i_k}$. Thus, (3) \Rightarrow (1) is proved.