APPENDIX - I
List of Publications

In National / International Journals

1. **G. Santhosh**, S. Venkatachalam, M. Kanakavel, K.N. Ninan
 STUDY ON THE FORMATION OF DINITRAMIDE USING MIXED ACID NITRATING AGENTS

 ADSORPTION OF AMMONIUM DINITRAMIDE (ADN) FROM AQUEOUS SOLUTIONS 1. ADSORPTION ON POWDERED ACTIVATED CHARCOAL

3. **G. Santhosh**, S. Venkatachalam, K.N. Ninan
 Propellants Explosives Pyrotechnics, Communicated.
 AN OVERVIEW ON THE SYNTHETIC ROUTES AND PROPERTIES OF AMMONIUM DINITRAMIDE (ADN) AND OTHER DINITRAMIDE SALTS

 A PROCESS FOR THE PREPARATION OF DINITRAMIDIC ACID AND SALTS THEREOF

5. **G. Santhosh**, S. Venkatachalam, K.N. Ninan,
 Adsorption Science and Technology (to be communicated).
 ADSORPTION OF AMMONIUM DINITRAMIDE (ADN) FROM AQUEOUS SOLUTIONS 2. ADSORPTION ON GRANULAR ACTIVATED CHARCOAL
CONTENTS
Symbols and Abbreviations
Preface
CHAPTER I
Introduction to Explosives and Propellants
1.1. Background and History of Explosives
1.1.1. Nitro Explosives
1.1.2. Liquid Oxidizers and Explosives
1.2. Solid Rocket Propellants
1.2.1. Propellant Types
1.2.1.1. Single Base Propellants
1.2.1.2. Double and Triple Base Propellants
1.2.1.3. Composite Modified Double Base Propellants
1.2.1.4. Composite Propellants
1.3. Development of Composite Propellants
1.4. Major Components of a Composite Solid Propellant
1.4.1. Oxidizer
1.4.2. Binder
1.4.3. Metallic Fuel
1.4.4. Cross-linking Agents and Curing Agents
1.4.5. Plasticizers
1.4.6. Other Additives
1.5. Basic Requirements for High Performance
1.6. Energetic Materials - Currently in Use
1.7. New High-energy Oxidizers and Binders
1.8. Development of Dinitramide Based Energetic Materials
1.9. Formulations of New Generation Solid Propellants
1.10. Preparation of Energetic Nitro Compounds by Nitration
1.10.1. Dinitrogen Pentoxide
1.10.2. Nitronium Salts
1.10.3. Nitration with HNO₃ - H₂SO₄
1.11. An Overview on the Synthetic Routes and Properties of Ammonium Dinitramide (ADN) and other Dinitramide Salts
1.12. Dinitramidic Acid and its Salts
1.13. Methods of Preparation of Dinitramide
1.15. Chemical and Physical Properties of Dinitramide Salts
1.16. Other Dinitramide Salts
1.17. Conclusions
1.18. References
CHAPTER II
Experimental Methods and Characterization Techniques
2.1. Spectroscopic Analysis
2.1.1. IR Spectral Studies
2.1.2. UV Spectral Studies
2.2. Chromatographic Analysis
2.2.1. Ion Chromatographic Studies
2.3. Elemental Analysis
2.4. Chemical Analysis
2.4.1. Analysis of Nitric Acid Content in Concentrated Nitric Acid
2.4.2. Analysis of HNO₂ Content in Concentrated Nitric Acid
2.5. Thermal Analysis
2.5.1. Differential Scanning Calorimetry (DSC)
2.5.2. Thermogravimetric Analysis
2.6. Calculation of Molar Extinction Co-efficient for ADN
2.6.1. Theory
2.6.2. Experimental
2.6.2.1. Materials and Methods
2.6.3. Determination of Molar Extinction Coefficient of ADN in Water
2.6.4. Determination of Molar Extinction Co-efficient of ADN in Methanol
2.6.5. Determination of Molar Extinction Co-efficient of ADN in Acetonitrile
2.6.6. Determination of Molar Extinction Co-efficient of
KDN in Water
2.7. Materials used and Methods
2.8. References

CHAPTER 3
Synthesis and Characterization of Dinitramide Salts
3.1. Synthesis and Characterization of Ammonium Dinitramide (ADN)
3.2. Experimental
3.2.1. Materials
3.2.2. Synthesis of Ammonium Dinitramide (ADN)
3.2.3. Separation of Ammonium Dinitramide
3.3. Results and Discussion
3.3.1. Nitrations of Ammonium Sulphamate (AS) using Mixed Acids.
3.3.2. Derivation of a Reaction Scheme
3.3.3. Spectral and thermal analysis of Ammonium dinitramide
3.3.4. Effect of Variation of Acid Ratio on the Yield of Ammonium Dinitramide
3.3.5. The Effect of Nitric Acid on the Dinitramide Acid Yield
3.3.6. The Effect of Sulphuric Acid Ratio on the Rate of Formation of Dinitramide Acid
3.3.7. The Effect of Water on the Yield of Ammonium Dinitramide
3.3.8. The Effect of Variation of Temperature
3.3.9. The Effect of Using Solvents as Nitrating Medium
3.3.10. Summary of Yield of ADN for Different Ratios of SAINA
3.4. Synthesis of Potassium Dinitramide (KDN)
3.5. Experimental
3.5.1. Materials
3.5.2. Method 1
3.5.3. Method 2
3.5.4. Separation of Potassium Dinitramide
3.6. Results and Discussion
3.6.1. Characterization of Potassium Dinitramide
3.7. Synthesis of Guanyurea Dinitramide (GUDN)
3.8. Experimental
3.8.1. Materials
3.8.2. Preparation of Guanyulea Sulphate
3.8.3. Preparation of Guanyurea Dinitramide
3.9. Results and Discussion
3.9.1. Characterization of GUDN
3.10. Preparation of Tetramine Cu(II) Dinitramide
3.11. Experimental
3.11.1. Materials
3.11.2. Synthesis of Tetramine Cu(II) Dinitramide
3.12. Results and Discussion
3.13. Emulsion Crystallization of Ammonium Dinitramide (ADN)
3.14. Experimental
3.14.1. Materials
3.15. Emulsion Crystallization Process
3.16. Results and Discussion
3.16.1. Particle Size Analysis
3.16.2. Analysis of Emulsion Crystallized ADN
3.17. Conclusions
3.18. References

CHAPTER 4
Adsorption of Ammonium Dinitramide (ADN) from Aqueous Solutions
4.1. Adsorption of ADN on Powdered Activated Charcoal (PAC) & Granular Activated Charcoal (GAC)
4.2. Introduction
4.3. Experimental
4.3.1. Materials
4.3.2. Instruments
4.3.3. Adsorption Experiments
4.4. Results and Discussion
4.4.1. Effect of Adsorption Time for PAC & GAC
4.4.2. Adsorption Isotherms
4.4.2.1. Langmuir Isotherm
4.4.2. Freundlich Isotherm
4.4.3. Results of Column Adsorption Model for the adsorption of ADN over PAC
4.4.4. Desorption of ADN from PAC
4.4.5. Determination of Adsorption Rate Constants for PAC and GAC
4.5. Conclusions
4.6. References

CHAPTER 5
Investigations on the Physical, Chemical and Electrochemical Properties of Ammonium Dinitramide (ADN)

5.1. Determination of Purity of Ammonium dinitramide (ADN)
5.2. Chemical Methods of Analysis
5.2.1. Oxidation
5.2.2. Kjeldahl Method
5.3. Ion-chromatography (IC) analysis and Non-aqueous Titrimetry
5.3.1. Calibration for Nitrate Ions in IC
5.3.2. Detection of Anionic Species in IC
5.3.3. Analysis of NO₃ and NO₂⁻ ions in ADN
5.4. Analysis of ADN by UV method
5.4.1. Effect of AN on the Absorption Spectrum of ADN
5.4.1.1. Methods
5.4.2. Results and Discussion
5.5. Purity Determination of ADN by DSC
5.5.1. Qualitative Evaluation
5.5.2 Quantitative Evaluation
Decomposition of ADN in Neutral and Aqueous Acidic Solutions
5.7. Experimental
5.7.1. Materials
5.7.2. Methods
5.8. Results and Discussion
5.8.1. Decomposition of Aqueous Solutions of ADN
5.8.2. Decomposition of Aqueous Acidic Solutions of ADN
5.9. Moisture Absorption Studies on Ammonium Dinitramide (ADN)
5.10. Experimental
5.10.1. Materials
5.10.2. Methods
5.11. Results and Discussion
5.11.1. Determination of absorption rate constants
5.12. Solubility of ADN in Different Solvents
5.13. Experimental
5.13.1. Materials
5.13.2. Methods
5.14. Results and Discussion
5.15. Cyclic Voltammetric Studies on Potassium Dinitramide and Dinitramidic acid Solutions
5.16. Experimental
5.16.1. Materials
5.16.2. Methods
5.17. Results and Discussions
5.17.1. Electrochemical Studies of Potassium Dinitramide
5.17.2. Electrochemical Studies of Dinitramidic acid (DNA) solution
5.17.3. Mechanism of Redox Process of Dinitramide
5.18. Conclusions
5.19. References

CHAPTER 6
Thermal Decomposition Characteristics of Dinitramide Salts and their Mixtures

6.1. Decomposition of ADN Under Isothermal Conditions - A TG-MS Study
6.2. Experimental
6.2.1. Materials
6.2.2. Methods
6.3. Results and Discussion
6.3.1. Analysis of Evolved gases by mass spectrometry
6.3.2. Kinetic Analysis
6.3.2.1. Isothermal Kinetics
6.3.2.2. Kinetic analysis using isoconversional method
6.4. Thermal Decomposition Kinetic Studies on Ammonium Dinitramide (ADN) - Glycidyl Azide Polymer (GAP) System
6.5. Experimental
6.5.1. Materials
6.5.2. ADN-GAP mixture
6.5.3. Instrumental methods
6.6. Results and Discussion
6.6.1. DSC data
6.6.2. TG data
6.6.3. Kinetic analysis
6.6.4. Kinetic analysis of TG data using Coats-Redfern equation.
6.6.5. Kinetic compensation
6.7. A Thermogravimetric Study on the Thermal Decomposition of Ammonium Dinitramide (ADN) - Potassium Dinitramide (KDN) mixtures.
6.8. Experimental
6.8.1. Materials
6.8.2. KDN-ADN mixtures
6.8.3. Instrumental methods
6.9. Results and Discussion
6.9.1. Phenomenological Data
6.9.2. Kinetic analysis
6.9.2.1. Kinetic analysis by Coats-Redfern method
6.9.2.2. Kinetic analysis by MKN equation
6.9.3. Rate constant (k) for the Decomposition
6.10. Thermal Decomposition Characteristics of Guanylurea Dinitramide (GUDN)
6.11. Experimental
6.11.1. Materials
6.11.2. Methods
6.12. Results and Discussion
6.12.1. Kinetic analysis of DSC data
6.12.1.1. Ozawa Method
6.12.1.2. Kissinger Method
6.13. The Phase Stabilization of Ammonium Nitrate by Potassium Dinitramide - A Differential Scanning Calorimetric Study
6.14. Experimental
6.15. Results and Discussion
6.15.1. Phase Transition and Modifications
6.15.2. Thermal Studies of AN Phase Stabilized with KDN
6.16. Conclusions
CHAPTER 7
Coating and Burn-rate Studies of Ammonium dinitramide (ADN)

7.1. Coating of Spherical Ammonium dinitramide (ADN) particles

7.2. Experimental

7.2.1. Materials

7.2.2. Methods

7.3. Results and Discussion

7.3.1. Coating of ADN using Ethyl cellulose

7.3.2. Coating of ADN using PMMA

7.3.3. Comparison of Moisture Absorption Profiles of ADN Coated with EC & PMMA

7.4. Burn-rate Measurements of ADN/GAP/Al Propellant

7.5. Experimental

7.5.1. Materials

7.5.2. Methods

7.6. Results and Discussion

7.6.1. Burning rate of ADN/GAP/Al propellant

7.6.2. Results on Calculations of Specific Impulse

7.7. Conclusions

7.8. References

CHAPTER 8
Summary and Conclusions

Appendix-1

List of Publications