CONTENTS

LIST OF FIGURES vii
LIST OF TABLES xvi
ACRONYMS xvii

CHAPTER 1 1-6
INTRODUCTION 1
1.1 Overview 2
1.2 Roadmap 5

CHAPTER 2 7-33
MULTILEVEL INVERTER to HYBRID MULTILEVEL INVERTER 7
2.1 Multilevel Inverter Configuration 8
2.1.1 Working Principle of Multilevel Inverter 9
2.2 Diode Clamped Multilevel Inverter 10
2.3 Flying Capacitor Multilevel Inverter 12
2.4 Cascaded Multilevel Inverters 14
2.5 Features of Multilevel Inverter 16
2.6 Hybrid Multilevel Inverter 17
2.7 Classification of Hybrid Multilevel Inverter 17
2.7.1 Asymmetric Hybrid Multilevel Inverter 17
2.7.2 Hybrid Multilevel Inverter Based on Half-Bridge Modules 19
2.7.3 New Symmetrical Hybrid Multilevel Inverters 21
2.7.4 Hybrid Clamped Five-Level Inverter Topology 23
2.7.5 Distinct Series Connected Cells Hybrid Multilevel Inverter 24
2.7.6 Hybrid Medium-Voltage Inverter Based on a NPC Inverter 26
2.7.7 Hybrid Multilevel Inverter Based on Main Inverter and Conditioning Inverter 27
2.7.8 New Hybrid Asymmetrical Multilevel H-Bridge Inverter 29
2.7.9 Hybrid Multilevel Inverter with Single DC Source 30
2.8 Summary 33
CHAPTER 3

NOVEL MODULATION TECHNIQUES FOR MULTILEVEL INVERTER

3.1 Classification of Different Modulation Techniques 35

3.2 Multi Carrier Pulse Width Modulation 36
3.2.1 Carrier Disposition Techniques (CD) 37
3.2.2 Phase Disposition (PD) Technique 37
3.2.3 Phase Opposition Disposition (POD) Technique 38
3.2.4 Alternative Phase Opposition Disposition (AOD) Technique 39
3.2.5 Phase Shifted (PS) Technique 40

3.3 Hybrid Modulation Techniques 41
3.3.1 Hybrid Modulation Strategy 41
3.3.2 Inverted Sine Carrier PWM (ISCPWM) 43
3.3.3 Variable Frequency Inverted Sine Carrier PWM (VFISPWM) 44
3.3.4 Optimized Hybrid PDPWM 45

3.4 Switching Frequency Optimal PWM 46
3.4.1 Multi Carrier Switching Frequency Optimal PWM (MC-SFOPWM) 47
3.4.2 Phase Shifted Carrier Switching Frequency Optimal Pulse Width Modulation (PSC-SFO-PWM) or Phase-Shifted Suboptimal Carrier PWM (PS-SUB-PWM) 48

3.5 Higher and Lower Carrier Cells and Alternative Phase Opposition PWM (HLCCAPOPWM) 49
3.5.1 Principle of HLCCAPOPWM 50
3.5.2 HLCCAPOPWM Control Technique 51

3.6 Alternative Hybrid PWM (AHPWM) 53
3.6.1 “W” PDPWM and “M” PDPWM Technique 53

3.7 Space Vector Modulation 55
3.7.1 Space Vectors 55
3.7.2 Switching Sequence 58

3.8 Comparison of Modulation Techniques on Basis of Modulation Index 60

3.9 Summary 61
CHAPTER 4

SIMULATION RESULTS for MULTILEVEL INVERTER and HYBRID MULTILEVEL INVERTER

4.1 Simulations for Cascaded Multilevel Inverter 63
 4.1.1 Five Level Cascaded Multilevel Inverter 63
 4.1.1.1 Five Level Cascaded Multilevel Inverter with Staircase Technique 63
 4.1.1.2 Five Level Cascaded Multilevel Inverter with Phase Disposition Modulation Technique 65
 4.1.2 Seven Level Cascaded Multilevel Inverter 67
 4.1.2.1 Seven Level Cascaded Multilevel Inverter with Staircase Technique Using Three H Bridges 67
 4.1.2.2 Seven Level Cascaded Multilevel Inverter with Phase Disposition Modulation Technique 69
 4.1.3 Nine Level Cascaded Multilevel Inverter 71
 4.1.3.1 Nine Level Cascaded Multilevel Inverter with Staircase Technique Using Three H Bridges 71

4.2 Simulations for Hybrid Multilevel Inverter 74
 4.2.1 Asymmetric Hybrid Multilevel Inverter 74
 4.2.1.1 Single Phase Asymmetric Hybrid Multilevel Inverter with Hybrid Modulation Technique 74
 4.2.1.2 Single Phase Asymmetric Hybrid Multilevel Inverter with Phase Disposition Modulation Technique 78
 4.2.1.3 Three Phase Asymmetric Hybrid Multilevel Inverter with Hybrid Modulation Technique 79
 4.2.2 Symmetrical Hybrid Multilevel Inverter 82
 4.2.2.1 Symmetrical Hybrid Multilevel Inverter with Staircase Technique 82
 4.2.2.2 Single Phase Symmetrical Hybrid Multilevel Inverter with Phase Shift Modulation Technique 83
 4.2.2.3 Three Phase Symmetrical Hybrid Multilevel Inverter with Phase Shift Modulation Technique 85
 4.2.3 Half Bridge Modules Based Hybrid Multilevel Inverter 86
 4.2.3.1 Single Phase Half Bridge Modules Based Hybrid Multilevel Inverter with Phase Shift Modulation Technique 87
4.2.3.2 Three Phase Half Bridge Module Based Hybrid Multilevel Inverter with Phase Disposition Modulation Technique

4.3 Summary

CHAPTER 5

SIMULATION RESULTS for SELECTED HYBRID MULTILEVEL INVERTER

5.1 Simulations for Single Phase Hybrid Multilevel Inverter
5.1.1 Simulations for HMLI with PD Modulation Technique
5.1.2 Simulations for HMLI with POD Modulation Technique
5.1.3 Simulations for HMLI with APOD Modulation Technique
5.1.4 Simulations for HMLI with PS Modulation Technique
5.1.5 Simulations for HMLI with Hybrid Modulation Technique
5.1.6 Simulations for HMLI with Third Harmonic Injection Modulation Technique
5.1.7 Simulations for HMLI with ISPWM Technique

5.2 Simulations for Three Phase Hybrid Multilevel Inverter
5.2.1 Simulations for Three Phase HMLI with PD Modulation Technique
5.2.2 Simulations for Three Phase HMLI with POD Modulation Technique
5.2.3 Simulations for Three Phase HMLI with APOD Modulation Technique
5.2.4 Simulations for Three Phase HMLI with PS Modulation Technique
5.2.5 Simulations for Three Phase HMLI with Hybrid Modulation Technique
5.2.6 Simulations for HMLI with Third Harmonic Injection Modulation Technique

5.3 Summary

CHAPTER 6

CONTROL SIGNAL GENERATION

6.1 Digital Signal Processor
6.2 Flow of Control Signals
CHAPTER 7

POWER CIRCUIT DESIGN

7.1 Design of Hybrid Multilevel Inverter
 7.1.1 Design of Single Phase Hybrid Multilevel Inverter
 7.1.2 MOSFET Selection
 7.1.3 Design of MOSFET Snubber
7.2 Design of Regulated Power Supply
7.3 Summary

CHAPTER 8

EXPERIMENTAL RESULTS

8.1 Hardware Results for Single Phase Hybrid Multilevel Inverter
 8.1.1 Hardware Output for Single Phase HMLI without modulation
 8.1.2 Hardware Output for Single Phase HMLI with PD Modulation Technique
8.2 Hardware Results for Three Phase Hybrid Multilevel Inverter
 8.2.1 Hardware Output for Three Phase HMLI with PD Modulation Technique
 8.2.2 Hardware Output for Three Phase HMLI with POD Modulation Technique
 8.2.3 Hardware Output for Three Phase HMLI with APOD Modulation Technique
 8.2.4 Hardware Output for Three Phase HMLI with Third Harmonic Modulation Technique (PD)
8.3 Summary

CHAPTER 9

CONCLUDING REMARKS and FUTURE SCOPE

9.1 Goals Reached
9.2 Innovations
9.3 Future Plans for Extension
9.4 Industry, Involvement and Interaction

CHAPTER 10

BIBLIOGRAPHY
APPENDIX A 165-167

DESIGN AND PRACTICAL READINGS for REGULATED POWER SUPPLY 165

A.1 Design for Regulated Power Supply 166
A.2 Practical Results for Regulated Power Supply 166

APPENDIX B 168-175

PHOTO GALLERY 168

APPENDIX C 176-177

WORKSHOPS ATTENDED and PAPERS PRESENTED/PUBLISHED 176