Chapter 5

TOTAL RESTRAINED DOMINATION NUMBER IN GRAPHS
5.1 Introduction

For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V \mid uv \in E\}$ and its close neighborhood is the set $N[v] = N(v) \cup \{v\}$. The open neighborhood of the set $S \subseteq V$ is the set $N(S) = \bigcup_{v \in S} N(v)$, and the close neighborhood of S is the set $N[S] = N(S) \cup S$.

In a graph a stem is a vertex adjacent to at least one end-vertex. The sets of all end-vertices and all stems are denoted by $\Omega(G)$ and $\Omega_1(G)$, respectively. In K_2 a vertex is both an end-vertex and a stem. A tree is an acyclic connected graph. A trivial tree is K_1. A tree T is a double star if it contains exactly two vertices that are not end-vertices. A double star with respectively p and q end-vertices attached at each stem vertex is denoted by $S_{p,q}$.

For two vertices u and v in a connected graph G, the distance $d_G(u, v)$ between u and v is the length of a shortest $u - v$ path in G. For a set $S \subseteq V$ and a vertex $v \in V$, the distance $d_G(v, S)$ between v and S is the minimum distance between v and a vertex of S. If a vertex u is adjacent to a vertex v, we write $u \sim v$, while if u and v are nonadjacent, we write $u \not\sim v$. If v is adjacent to no vertex in a set $A \subseteq V(G)$ then we write $v \sim A$ and if v is adjacent to every vertex in A then we write $v \sim A$. A plane graph is a planar graph together with an embedding in the plane. From the Jordan Closed
Curve Theorem, we know that a cycle C in a plane graph separates the plane into two regions, the interior of C and the exterior of C. For more detail see [20, 56].

A set $D \subseteq V(G)$ is a dominating set of G if for every vertex $v \in V(G) - D$, there exists a vertex $u \in D$ such that v and u are adjacent. The minimum cardinality of a dominating set in G is the domination number denoted $\gamma(G)$. The literature on domination has been surveyed in the two books by Haynes et al. [25, 26]. Also, we refer to [55].

A set $D \subseteq V(G)$ is a total dominating set (TDS) of a graph G if each vertex of G has a neighbor in D. Equivalently, a set $D \subseteq V(G)$ is a TDS of a graph G if D is a dominating set of G and $\langle D \rangle$ does not contain an isolate vertex. The cardinality of a minimum TDS in G is the total domination number and is denoted by $\gamma_t(G)$. A minimum TDS of a graph G is called a $\gamma_t(G)$-set. The notion of total domination in graphs was introduced by Cockayne et al. [6] in 1980 and for a survey of total domination in graphs see [23], for more detail see [17, 27, 53].

A subset S of vertices of G is a restrained dominating set if $N[S] = V$ and the subgraph induced by $V - S$ has no isolated vertex. The restrained domination number $\gamma_r(G)$ is the minimum cardinality of a restrained dominating set of G. The restrained
domination number was introduced by Domke et al. [12] and has been studied by several author (see for example [10, 11]).

A set $D_{tr} \subseteq V(G)$ is a total restrained dominating set (TRDS) of a graph G if it is a dominating set and the induced subgraphs D_{tr} and $V(G) - D_{tr}$ do not contain an isolated vertex. The cardinality of a minimum TRDS in G is the total restrained domination number and is denoted by $\gamma_{tr}(G)$. A minimum TRDS of a graph G is called a $\gamma_{tr}(G)$-set. Thus, the total restrained dominating set of a graph combines the properties of both a total dominating set and a restrained dominating set. We assume that every graph without an isolated vertex has a TRDS and $D_{tr} = V(G)$ is such a set. Moreover, the above definitions imply that for any graph G without an isolated vertex every TRDS is a TDS, so $\gamma_t(G) \leq \gamma_{tr}(G)$. The total restrained domination number of a graph was defined by De-Xiang Ma et al. [57] in 2005.

We state the following result which is due to Goddard and Henning [18]:

![Fig. 5: The graph G_9](image)
Theorem L. [18] If G is a planar graph with $\text{diam}(G) = 2$, then
$\gamma(G) \leq 2$ or $G = G_9$, where G_9 is the graph of Fig. 5.

In this chapter, we first give some results on total restrained domination number of graphs. Also, we characterize all graphs G of order n for which
(i) $\gamma_{tr}(G) = n$;
(ii) $\gamma(G) = 1$ and $\gamma_{tr}(G) = 3$;
(iii) $\gamma_{tr}(G) = 2$.

Further, we give some bounds on total restrained domination number of graphs with diameter 3. Finally, we present some bound for total restrained domination number of some graphs with diameter 2 and γ-set of cardinality 2 and total restrained domination number 3.

5.2 Results

We begin with the following observation that has a straightforward proof.

Observation 5.2.1. Let G be a nontrivial connected graph of order n. Then
(i) $\gamma(G) \leq \gamma_t(G) \leq \gamma_{tr}(G)$ and $\gamma_r(G) \leq \gamma_{tr}(G)$. Further, $\gamma_{tr}(G) \geq \max\{\gamma_r(G), \gamma_t(G)\}$;

(ii) $\Omega(G) \cup \Omega_1(G) \subseteq D_{tr}$;

(iii) $2 \leq \gamma_{tr}(G) \neq n - 1$.

Observation 5.2.2. $\gamma_{tr}(K_n) = 2$, where $n \neq 3$ and for $n = 3$, $\gamma_{tr}(K_n) = 3$.

Lemma 5.2.3. Let T be a tree of order $n \geq 3$ with $\text{diam}(T) = 2$ or 3, then $\gamma_{tr}(T) = n$.

Proof. Clearly, $\text{diam}(T) = 2$ if and only if $T = K_{1,n-1}$. Also, $\text{diam}(T) = 3$ if and only if T is a double star graph, say $S_{p,q}$. By these facts and by Observation 5.2.1, it follows that $\gamma_{tr}(K_{1,n-1}) = n$ and $\gamma_{tr}(S_{p,q}) = |V(S_{p,q})|$.

In the following theorem, we show that there exists a connected graph G of order $n \geq 4$ and $\text{diam}(G) = \gamma_{tr}(G) = 2$.

Proposition 5.2.4. Let G be a planar complete bipartite graph of order n. Then $\gamma_{tr}(G) = 2$ if and only if either $G = K_2$ or
\(G = K_{2,n-2} \).

Proof. It is well-known that a complete bipartite graph \(G \) is planar if and only if \(G = K_{m,n-m} \), where \(m = 1, 2 \). On the other hand, \(\gamma_{tr}(K_{1,n-1}) = n \). Now, by combining of the stated assumptions the desired result follows. \(\square\)

Observation 5.2.5. \(\gamma_{tr}(K_{m,n-m}) = 2 \), where \(n-m \geq m \geq 2 \).

As a consequence of Proposition 5.2.4 and Observation 5.2.5 we have the following corollary:

Corollary 5.2.6. Let \(G \) be a graph of order \(n \geq 4 \) which contains \(K_{m,n-m} \) as subgraph, where \(n-m \geq m \geq 2 \). Then \(\gamma_{tr}(G) = 2 \).

Proposition 5.2.7. Let \(G \) be a nontrivial connected graph of order \(n \) with \(diam(G) = 2 \) and \(\Omega(G) \neq \emptyset \). Then \(\gamma_{tr}(G) = |\Omega(G)| + 1 \).

Proof. Since \(G \) is connected with \(diam(G) = 2 \) and \(\Omega(G) \neq \emptyset \), then \(G \) contains a \(K_{1,n-1} \) as a spanning subgraph. Let \(x \) be the unique stem vertex of \(G \). Then all of the non-endvertices must be adjacent to \(x \). It follows that \(\Omega(G) \cup \{x\} \) is the unique TRDS of \(G \). Hence the result follows. \(\square\)
5.3 Characterizations

In the following result, we characterize all graphs G of order n with $\gamma_{tr}(G) = n$.

Proposition 5.3.1. Let G be a connected graph of order $n \geq 2$. Then $\gamma_{tr}(G) = n$ if and only if either $G = K_3$ or G is a graph such that $\Omega(G) \cup \Omega_1(G) \cup S = V(G)$ and $S = \{v | v \notin \Omega(G) \cup \Omega_1(G) \text{ and } N(v) \subseteq \Omega_1(G) \text{ for all } v\}$

Proof. Necessity: Observation 5.2.1(ii) asserts that $\Omega(G) \cup \Omega_1(G) \subseteq D_{tr}$. On the other hand, since $N(v) \subseteq \Omega_1(G)$ for all $v \notin \Omega(G) \cup \Omega_1(G)$ and $G - (\Omega(G) \cup \Omega_1(G))$ is union of isolated vertices. These implies that $\gamma_{tr}(G) = n$.

Sufficiency: Observation 5.2.2, shows that $\gamma_{tr}(K_3) = 3$. Now, we assume that, $G \neq K_3$. Let $\gamma_{tr}(G) = n$. Assume, to the contrary, that $N(v) \notin \Omega(G) \cup \Omega_1(G)$. Then there is a vertex $u \in V(G) - (\Omega_1(G) \cup \Omega(G))$ such that $uv \in E(G)$. Hence, there are $w, r \in V(G)$ such that $uw \in E(G)$ and $vr \in E(G)$, where w and r are not vertices of degree 1. Therefore $S = V - \{u, v\}$ is a $\gamma_{tr}(G)$-set, a
contradiction with $\gamma_{tr}(G) = n$. \hfill \square

Proposition 5.3.2. Let G be a connected graph of order n and $\gamma(G) = 1$. Then (i) $\gamma_{tr}(G) = \Omega(G) \cup \Omega_1(G)$ while G has a pendant edge. (ii) $\gamma_{tr}(G) \leq 3$ while G has no pendant edge, with equality if and only if G is union of $k = \frac{n-1}{2}$ copies of complete graph K_3 such that all of them have a common vertex and n is an odd integer.

Proof. It is well-known that $\gamma(G) = 1$ if and only if G has a vertex of degree $n-1$. Now, if G has a pendant edge, then $\Omega(G) \cup \Omega_1(G)$ is a TRDS of G, this completes the part (i). Finally, if G has no pendant edge, then clearly we have $\gamma_{tr}(G) \leq 3$.

If G is union of $k = \frac{n-1}{2}$ copies of complete graph K_3 such that all of them have a common vertex and n is an odd integer, then $\gamma_{tr}(G) = 3$.

Conversely, since $\gamma(G) = 1$, then G contains a $K_{1,n-1}$ as spanning subgraph. We claim that G is union of $k = \frac{n-1}{2}$ copies of complete graph K_3 such that all of them have a common vertex. Assume, to the contrary, that a copy, say $G_i \neq K_3$, and so $|V(G_i)| \geq 4$. 86
Then there exists a vertex \(w \in V(G_i) \) such that \(G_i - \{u, w\} \) has no isolated vertex and \(\{u, w\} \) is a \(\gamma_{tr} \)-set of \(G \), where \(u \) is the common vertex of all copies, a contradiction with \(\gamma_{tr}(G) = 3 \). This completes the proof.

In the following result, we characterize all graphs \(G \) for which \(\gamma_{tr}(G) = 2 \).

Proposition 5.3.3. Let \(G \) be a connected graph of order \(n \). Then \(\gamma_{tr}(G) = 2 \) if and only if either (i) \(G \) has a vertex \(v \) of degree \(n - 1 \) such that \(|\Omega(G)| = 1 \), or \(G \) has no pendant edge and a component of \(G[N(v)] \) is of order at least 3. or (ii) \(G \) has \(S_{p,q} \) as spanning subgraph such that \(G \) has no pendant edge and each component of \(G[V(G) - \{u, v\}] \) is of order at least 2 and \(p + 1 \leq \deg_G(u) \leq n - 2 \), \(q + 1 \leq \deg_G(v) \leq n - 2 \) for some \(u \) and \(v \).

Proof. Necessity: is obvious.

Sufficiency: Since \(\gamma_{tr}(G) = 2 \), then \(\gamma(G) \leq 2 \). We consider the following two cases:

Case 1: If \(\gamma(G) = 1 \), then \(G \) contains a \(K_{1,n-1} \) as spanning sub-
graph. Using Observation 5.2.1(ii) Which implies that $|\Omega(G)| \leq 1$, otherwise, a contradiction with $\gamma_{tr}(G) = 2$. If $|\Omega(G)| = 1$, and so $\Omega(G) \cup \Omega_1(G)$ is the unique TRDS of G, hence the desired result follows. Finally, if $|\Omega(G)| = 0$. Since G contains a $K_{1,n-1}$ as spanning subgraph. Therefore, there exists a vertex $v \in V(G)$ such that $deg(v) = n - 1$. It is easy to see that $G[N(v)]$ is union of some connected graph such that each vertex of these graphs are adjacent to v in G. We deduce at least one of them must be of order at least 3, otherwise a contradiction with $\gamma_{tr}(G) = 2$.

Case 2: If $\gamma(G) = 2$, then G must be have a $S_{p,q}$ as spanning subgraph. Observation 5.2.1(ii) implies that G has no pendant edge and there exist two vertices u and v such that $G[V(G) - \{u, v\}]$ is union of some connected graph of order at least 2 and $p + 1 \leq deg_G(u) \leq n - 2$, $q + 1 \leq deg_G(v) \leq n - 2$, otherwise, a contradiction with $\gamma_{tr}(G) = 2$. \qed
5.4 Bounds on total restrained domination number

Theorem 5.4.1. Let \(G \) be a nontrivial connected graph with \(\text{diam}(G) = 3 \) and \(|\Omega_1(G)| = 2 \). Let \(T = \{ u | d(u, w) = 3, w \in \Omega(G) \} \) and \(|T| = m \). Let \(v \) be a vertex in \(N(\Omega_1(G)) \) such that \(|N_T(v)| = k \) and \(k \) be the maximum number between vertices such as \(v \) and \(k \) be the maximum number between vertices such as \(v \). Then
\[
|\Omega(G) \cup S| + 2 \leq \gamma_{tr}(G) \leq |\Omega(G) \cup S| + m - k + 3,
\]
where \(S = \{ v \mid N(v) \subseteq \Omega_1(G) \} \). These bounds are sharp.

Proof. It is clear to see that \(|\Omega(G) \cup S| + 2 \leq \gamma_{tr}(G) \). Now, we show that \(\gamma_{tr}(G) \leq |\Omega(G) \cup S| + 2 + (1 + m - k) \). Let \(v \) be a vertex such that \(|N_T(v)| = k \). Let the other vertices in \(T \) is total dominated by at most \(m - k \) vertices in \(N(\Omega_1(G)) \cap N(T) \). Let \(W \) be at most these \(m - k \) vertices. Then \(D = \Omega(G) \cup S \cup \Omega_1(G) \cup W \cup \{ v \} \) is a total dominating set and \(D \) and \(G - D \) have no isolated vertex. So \(\gamma_{tr} \leq |\Omega(G) \cup S| + 2 + (1 + m - k) \).

The sharpness of the lower bound is trivial. To show for the
sharpness of the upper bound, we define the graph $G_{2,m,k}$ as shown in Fig. 6, where $m = 6$ and $k = 4$.

![Graph G_{2,m,k}](image)

Fig. 6: The graph $G_{2,m,k}$

It is easy to check that $S = \{u_1, u_3\}$, $\Omega(G) = \{x, y\}$, $T = \{w_2, w_3, z_1, z_2, z_3, z_4\}$, $N(\Omega_1(G)) = \{u_1, u_2, u_3, w_1, w_4, a, b, x, y\}$ and $N_T(u_2) = \{z_1, z_2, z_3, z_4\}$ such that $|N_T(u_2)|$ is the maximum number between vertices in $N(\Omega_1(G))$. Then $\gamma_{tr}(G) = |\Omega(G) \cup S| + m - k + 3$. Further, $\{a, b, x, y, w_1, w_4, u_1, u_2, u_3\}$ is a γ_{tr}-set for G.

Theorem 5.4.2. Let G be a nontrivial connected graph with $\text{diam}(G) = 3$ and $|\Omega_1(G)| = 1$. Then $|\Omega(G)| + 2 \leq \gamma_{tr}(G) \leq \text{deg}(v) + |S| + 1$, where $v \in \Omega_1(G)$ and $S = \{u \mid N(u) \subseteq N(v)\} - \{u \mid V(G[N[u] - \{v\}] \subseteq N[v]\}$. These bounds are sharp.

Proof. Let w, v, s, t be a diametral path in G and $w \in \Omega(G)$ and
$v \in \Omega_1(G)$. Clearly, every vertex from $V(G) - N[v]$ will be joined to a vertex from $N[v] - \Omega(G)$. Let $V(G) - N[v] = S \cup \overline{S}$, where $S = \{z | N(z) \subseteq N[v]\} - \{z | V(G[N[z] - \{v\}] \subseteq N[v]\}$. It is easy to check that for every vertex $r \in \overline{S}$ there exist a vertex $x \in \overline{S}$ such that $x \sim r$. Therefore, $N[v] \cup S$ is a total restrained dominating set of G, This completes the proof.

![Graph](image)

Fig. 7.

The sharpness of the lower bound is trivial. To show for the sharpness of the upper bound, we consider the constructed graph Fig. 7. Further, $S = \{u\}$ and $\{w_1, w_2, \ldots, w_t, v, a, b, u\}$ is a γ_{tr}-set of the graph.
5.5 Total restrained domination number of some planar graphs

If \(G \) is a planar graph of diameter 2. Then by Theorem L, we have \(G = G_9 \) or \(\gamma(G) \leq 2 \). It is straightforward to see that \(\gamma_{tr}(G_9) = 3 \). Now, suppose \(\gamma(G) \leq 2 \). If \(\gamma(G) = 1 \), then we can apply Proposition 5.3.2 to obtain total restrained domination number of \(G \). Now, in the following results, we discuss total restrained domination number of planar graph \(G \) of diameter 2 and \(\gamma(G) = 2 \).

Theorem 5.5.1. Let \(G \) be a planar graph of diameter 2 and with a \(\gamma(G) \)-set \(\{a, b\} \subseteq V(G) \), \(d(a, b) = 1 \) and \(|N(a) \cap N(b)| \leq 1 \). Then \(\gamma_{tr}(G) \leq 3 \).

Proof. Let \(\gamma(G) = 2 \) and \(d(a, b) = 1 \), then \(G \) has no pendant edge, otherwise, a contradiction with \(diam(G) = 2 \) or \(\gamma(G) = 2 \). If \(|N(a) \cap N(b)| = 0 \), then it is easy to see that \(\{a, b\} \) is a \(D_{tr} \). If \(|N(a) \cap N(b)| = 1 \), we may assume that \(N(a) \cap N(b) = \{u\} \). If \(deg(u) = 2 \), then \(\{a, b, u\} \) is a total restrained domination number of \(G \), otherwise \(\{a, b\} \) is a \(D_{tr} \). This completes the proof. \(\square \)
Theorem 5.5.2. Let G be a planar graph of diameter 2 and with a $\gamma(G)$-set $\{a,b\} \subseteq V(G)$, $d(a,b) = 2$ and $|N(a) \cap N(b)| \leq 2$. Then $\gamma_{tr}(G) \leq 3$.

Proof. Let $\gamma(G) = 2$ and $d(a,b) = 2$, then G has no pendant edge. Assume, to the contrary, let G has a pendant edge. Then it must be at t, where t lies on $a - t - b$ path, a contradiction by the stated γ-set. Let A, B and C be three sets such as $N(a) \cap N(b) = C$, $N(a) - C = A$ and $N(b) - C = B$. Since $d(a,b) = 2$, so $|C| \geq 1$.

We process the following cases:

Case 1: $|C| = 1$ and so $C = \{c\}$. If $c \sim (A \cup B)$, then contradicting with $\gamma(G) = 2$. Hence, there is a vertex from $A \cup B$ such that is not adjacent to c. Without loss of generality, we may assume that $x \in A$ and $x \not\sim c$. Let B_1 and B_2 be partitions of B, such that B_1 is the set of those vertices which has a neighbor in $A \cup B$ and B_2 is the set of those vertices that are adjacent to c and has no neighbor in $A \cup B$.

Claim 1. $B_2 = \emptyset$.

93
Proof. Assume, to the contrary, that $B_2 \neq \emptyset$, and so $y \in B_2$. It is easy to check that $d(x, y) \geq 3$, a contradiction with $diam(G) = 2$. Hence, the desired result follows.

Thus, each vertex of B must be adjacent to $A \cup B$. Now, we consider the following two cases:

(i): $\deg(z) = 2$ for some $z \in A$ such that $z \sim \{a, c\}$. It is easy to check that $c \sim B$. Assume, to the contrary, that there exists a vertex $b' \in B$ such that $c \sim b'$, then $d(z, b') \geq 3$, a contradiction with $diam(G) = 2$. Certainly, planarity of G and $diam(G) = 2$ show that $|B| \leq 2$, otherwise, a contradiction with $diam(G) = 2$.

On the other side, all vertices of A, except those vertices such as z’s, are adjacent to c or only a vertex of B, say b_1, otherwise, a contradiction with $diam(G) = 2$. It implies that $\{b_1, c, b\}$ is a TRDS of G, where $|B| = 1$, and $\{b_1, c\}$ is a TRDS of G, where $|B| = 2$. Hence the result follows.

(ii): $\deg(z) \geq 3$ for all $z \in A$. Hence, $\{a, b, c\}$ is a TRDS of G. Hence the result follows.
Case 2: If \(|C| = 2\), and let \(C = \{c_1, c_2\}\). We have the following easy claim.

Claim 2. Every vertex \(x \in A \cup B\) has a neighbor in \(A \cup B\).

Now, we continue to complete of the proof by the followings:

(i) If \(c_1 \sim y\) or \(c_2 \sim y\), where \(y \in A \cup B\). Without loss of generality, we may assume that \(c_1 \sim y\). Then by using Claim 2, \(\{a, c_2, b\}\) is a TRDS of \(G\).

(ii) If \(c_1 \sim y\) and \(c_2 \sim y\) for every \(y \in A \cup B\). Therefore, every vertex of \(A\) must be adjacent to a vertex of \(B\) and converse. Otherwise, if there exist two vertices \(a_1 \in A\) and \(b_1 \in B\) such that \(a_1 \sim b_1\), a contradiction with \(diam(G) = 2\) (Because, \(d(a_1, b_1) \geq 3\), \(d(a_1, b) \geq 3\) or \(d(a, b_1) \geq 3\)). Now, we consider the following claim.

Claim 3. If \(c_i \sim A \cup B\) for \(i = 1, 2\), then \(|A| \not\leq 4\) and \(|B| \not\leq 4\).

Proof. Assume, to the contrary, that \(|A| \geq 4\) and \(|B| \geq 4\). Since, \(c_i \sim A \cup B\), and by assumption \(diam(G) = 2\), it implies that, there exists a vertex \(x \in A \cup B\), say \(x \in A\), such that \(d(x, y) \geq 3\) for some \(y \in B\), otherwise a contradiction with \(diam(G) = 2\). Hence
the result follows.

Claim 3 and our assumptions imply that one of the following holds.

(ii-1) $|A| = 1$ and $|B| \geq 1$. Let $A = \{a_1\}$. The vertex a_1 must be adjacent to all vertices of B, otherwise, a contradiction with $diam(G) = 2$. It is easy to check that $\{a_1, a, c_1\}$ is a TRDS of G. Hence the result follows.

(ii-2) $|A| = 2$ and $|B| \geq 2$. We simply imply that there exists a vertex in A or B, without loss of generality we may assume that $x \in A$, such that $x \sim A - \{x\}$. Otherwise, a contradiction with $diam(G) = 2$. Thus, there exists a vertex $y \in B$ with $x \sim y$ such that $\{x, b, y\}$ is a TRDS of G.

(ii-3) $|A| = 3$ and $|B| \geq 3$. An argument similar to that described in the proof of Case (ii-2) shows that the result holds. \square
The following shows that Theorem 5.5.2 is not true for $|C| = 3$.

Let $C = \{c_1, c_2, c_3\}$, $A = N(a) - C = \{a_1, a_2, a_3\}$, $B = N(b) - C = \{b_1, b_2, b_3\}$. Let $E(G) = \{ac_i, bc_i\ i = 1, 2, 3\} \cup \{aa_i, c_1a_i, c_1b_i, bb_i\ i = 1, 2, 3\}$ (see Fig. 8.). Then G is a planner graph with $diam(G) = 2$, but $\gamma_{tr}(G) = 4$.

We conclude this chapter with the following corollary.

As an consecutive of the Theorems 5.5.1 and 5.5.2, we have the following corollary:

Corollary 5.5.3. Let G be a planar graph of diameter 2 and with a $\gamma(G)$-set $\{a, b\} \subseteq V(G)$ and $|N(a) \cap N(b)| \leq t$. Then $\gamma_{tr}(G) \leq t + 2$.

This bound is sharp.
To sharpness of Corollary 5.5.3, we may construct the Fig. 9.

It is easy to check that \(\{a, b\}, \{a, c\} \) and \(\{b, c\} \) are \(\gamma \)-sets of the constructed graph. Further, \(d(a, b) = d(a, c) = 1 \) and \(d(b, c) = 2 \). Also, \(|N(a) \cap N(b)| = t_1 \), \(|N(a) \cap N(c)| = t_2 \) and \(|N(b) \cap N(c)| = t_3 + 1 \), where \(t_1 \leq t_2 \leq t_3 - 1 \) and \(t = \min\{t_1, t_2, t_3 - 1\} \).