Appendix

List of abbreviations

A: Adenine
Aₐ₅₁₅: Absorbance at 615nm
Aₐ₅₅₂: Absorbance at 652 nm
Aₐ₅₆₂: Absorbance at 562 nm
ARMD: Age-related macular degeneration
α: Alpha
APC: Allo-phycocyanin
Å: Angstrom
~: Approximately
β: Beta
BG-11: Blue Green Algae medium
BSA: Bovine Serum Albumin
BTA: Biotechnological Algae
BLAST: Basic Local Alignment Search Tool
BLASTN: Basic Local Alignment Search Tool for nucleotides
C: Cytosine
C: Carbon
Car: Carotenoids
CDM: Consensus Data Mining protein
°C: Degree Centigrade
CHD: Coronary heart disease
crtE: Geranylgeranyl pyrophosphate synthase
crtB: Phytoene synthase
crtP/crtI: Phytoene desaturase
cf.: Confer
cpcA: Carotenoid Protein complex A
cpcB: Carotenoid Protein complex A
crtQ: ζ-carotene desaturase
crtW/crtO: β-carotene ketolase
crtR: β-carotene hydroxylase
Cru F: Carotenoid 1,2-hydraztase
Cru A: Lycopene dicyclase
Cru P: Lycopene monocyclase
Cru G: Lycopene
Crt U: Calreticulin type U
Crt H: Calreticulin type H
CuSO₄: Copper sulphate
CuSO₄·5H₂O: Copper sulphate pentahydrate
o: Degree

dNTP: Deoxynucleoside triphosphate
1-D: Simpson’s index
E: East
E: Evenness
E value: Expected value
EDTA: Ethylene diaminetetraacetic acid

et al.: et alie (co-authors)
e.g.: exempli gratia (for example)
FAME: Fatty Acid Methyl Ester
FID: Flame Ionisation Detector
Fig.: Figure
FPP: Farnesyl pyrophosphate

g/kg DW: Gram per kilogram dry weight
G: Guanine
GC: Gas Chromatography
GGPP: Geranyleranyl pyrophosphate
GPS: Global Positioning system
gm: Gram
H: Shannon index
hrs: Hours
HIV: Human Immuno Deficiency Virus
HPLC: High Pressure Liquid Chromatography
IAA: Indole Acetic Acid
IBM: International Business Machines
IBSD: Institute of Bioresources and Sustainable Development
IDT: Integrated DNA technology
IGS: Intergenic spacer
ITS: Internal Transcribed Spacer
Kbp: Kilobase pair
K₂HPO₄: Dipotassium hydrogen phosphate
KH₂PO₄: Potassium di-hydrogen phosphate
L: Litre
LSD: Least Significant Difference
LTRR: Long Tandemly Repeated Repetitive
r: Ribosomal
m: Metre
λ_{max}: Maximum Absorbance
μg: Microgram
MEGA: Molecular Evolutionary Genetics Analysis
MHz: Megahertz
mM: milli-Molar
μmol photon/m²/sec: Micro-mole photon per metre square per second
mg/m²/d: Milligram per metre square per dalton
M: Molar
ml: Millilitre
μM: Micromolar
μmol: Micromole
μg/mg: Microgram per milligram
Mg: Magnesium
MgCl₂: Magnesium chloride
mg/ml: Milligram per millilitre
Mins: Minutes
MP: Maximum Parsimony
mRNA: messenger Ribonucleic Acid
MSL: Metre above sea level
N: North
N: Normal
N₂: Nitrogen
Na₂CO₃: Sodium carbonate
Na₂SO₄: Sodium sulphate
NaOH: Sodium hydroxide
NCBI: National Centre for Biotechnology Information
NER: North East Region
NaCl: Sodium chloride
NaNO₃: Sodium nitrate
nm: Nanometre
nifH: Nitrogen fixing H gene
no.: Number
NTSYS: Numerical Taxonomy and Multivariate Analysis system
OCP: Orange Carotenoid Protein
O.D.: Optical Density
OTU: Operational Taxonomical Units
PAST: Palaeontological Statistics Software package for education and data analysis
PBS: Phycobilisomes
PC: Phycocyanin
PCR: Polymerase Chain Reaction
PCC: Pasteur Culture Collection
PC-IGS: Phycobil gene with Intergenic spacer
±: Plus minus
%: Percentage
PE: Phycoerythrin
pH: Puissance de hydrogen (Potential of Hydrogen)
PS: Photosystem
PSII: Photosystem two
psi: Pounds per square inch
P_{max}: Maximum potential photosynthetic rate per individual
RCP: Red carotenoid protein
RAPD: Random Amplified Polymorphic DNA
rDNA: Ribosomal Deoxyribonucleic acid
rRNA: Ribosomal Ribonucleic acid
rpm: Rotation per minute
S: Svedberg unit
SD: Standard Deviation
S_0: Ground state
S_2: Second singlet state
S_9: Stage nine
SN: Serial number
sp.: Species
spp.: Species
SOT: Sulphotransferase
SPSS: Software Package for the Social Sciences
STRR: Short Tandemly Repeated Repetitive
SW1: Splash white 1 gene
SW2: Splash white 2 gene
SW3: Splash white 3 gene
T: Thymine
Taq: *Thermus aquaticus*
TE: Tris-EDTA buffer
Tris-HCl: Tris Hydrochloric acid
TLC: Thin Layer Chromatography
tRNA: transfer Ribonucleic acid
U: Unit
UPGMA: Unweighted Pair Group Method with Arithmetic Mean
v: Volume
V: Volt
viz.: Videlicet (namely)
vis-a-vis: In relation to
W/cm²: Watt per square centimetre
w/w: Weight by weight
XS: Xanthogenate Sodium dodecyl Sulphate
Growth medium, standard graphs and FAME standard

BG-11 medium (Stanier et al., 1971) composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>gm/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sodium nitrate</td>
<td>1.5000</td>
</tr>
<tr>
<td>2. Di potassium hydrogen phosphate</td>
<td>0.0400</td>
</tr>
<tr>
<td>3. Magnesium sulphate heptahydrate</td>
<td>0.0750</td>
</tr>
<tr>
<td>4. Calcium chloride dihydrate</td>
<td>0.0360</td>
</tr>
<tr>
<td>5. Citric acid</td>
<td>0.0060</td>
</tr>
<tr>
<td>6. Ferric ammonium citrate</td>
<td>0.0060</td>
</tr>
<tr>
<td>7. EDTA (di sodium magnesium salt)</td>
<td>0.0010</td>
</tr>
<tr>
<td>8. Sodium carbonate</td>
<td>0.0200</td>
</tr>
<tr>
<td>9. Trace metal mix</td>
<td>1.0000 ml</td>
</tr>
</tbody>
</table>

Trace metal mix

<table>
<thead>
<tr>
<th>Component</th>
<th>gm/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Boric acid</td>
<td>2.8600</td>
</tr>
<tr>
<td>2. Manganese chloride tetrahydrate</td>
<td>1.8100</td>
</tr>
<tr>
<td>3. Zinc sulphate heptahydrate</td>
<td>0.2220</td>
</tr>
<tr>
<td>4. Sodium molybdate dihydrate</td>
<td>0.0390</td>
</tr>
<tr>
<td>5. Copper sulphate pentahydrate</td>
<td>0.0790</td>
</tr>
<tr>
<td>6. Cobalt nitrate hexahydrate</td>
<td>0.0494</td>
</tr>
</tbody>
</table>

Preparation of standard graph for total soluble protein:

10 mg of bovine serum albumin (BSA) was dissolved in a standard flask and the volume was made up to 100 ml (conc. 100 µg/ml). Five (05) different protein concentrations and one blank solution were taken. All the reagents were added as in the Herbert et al. (1971) method. A standard curve having X-axis as concentration of protein in µg/ml and Y-axis as optical density (O.D.) was drawn and from the standard graph, the corresponding concentration of protein content of unknown Oscillatorialean strains were calculated.

Preparation of standard graph of total carbohydrates:

10 mg of glucose was dissolved in a standard flask and the volume was made up to 100 ml (conc. 100 µg/ml). Standard graph was plotted with 5 different concentration of glucose viz. 20, 40, 60, 80 and 100 µg/ml following the method of Spiro (1966). The concentration of glucose and optical density were plotted on X-axis and Y-axis respectively to get the standard graph and the corresponding concentration of carbohydrate content of unknown Oscillatorialean strains were calculated from the graph.
Estimation of total carotenoids

Protocol at the glance (Jensen A, 1978)

- Collection of cyanobacteria
- Isolation of Oscillatoriales
- Morphological identification of Oscillatoriales

Inoculum of 10 mg dry wt. biomass was inoculated in sterile 100 ml of BG-11 medium with nitrate content and kept for 15 days at 54-67 μmol photon/m²/sec of light intensity at 28±2°C with 14/10 hrs light and dark period

- Homogenized 10 ml of algal suspension of the log phase culture
- Centrifuged by refrigerated centrifuge at 6500 rpm for 10 mins and the supernatant was discarded

The pellets were air dried and weighed 5 mg dry weight by an electronic balance

- 3 ml of 85% acetone were added to the biomass in the centrifuge tube

- Subjected to repeated freezing and thawing at 4°C until the pellet becomes colourless. The volume of the extract were measured and the final volume were made up to 10 ml with 85% acetone

- Carotenoids content were estimated by optical density (O.D.) at 450 nm using 85% acetone as blank using spectrophotometer

The total amount of carotenoids were calculated in μg/mg dry wt. using the formula below: \(C = (D \times V \times f) \times 10 \div 2500 \), where, \(D = \) O.D. at 450 nm; \(V = \) Volume of the extract; \(f = \) Dilution factor; average extinction co-efficient of pigment is 2500
Composition of SUPELCO™ 37 Fame Mix
(Standard for lipid profiling and fatty acid)

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Butyric acid methyl ester (C4:0)</td>
<td>4%</td>
</tr>
<tr>
<td>2. Caproic acid methyl ester (C6:0)</td>
<td>4%</td>
</tr>
<tr>
<td>3. Caprylic acid methyl ester (C8:0)</td>
<td>4%</td>
</tr>
<tr>
<td>4. Capric acid methyl ester (C10:0)</td>
<td>4%</td>
</tr>
<tr>
<td>5. Undecanoic acid methyl ester (C11:0)</td>
<td>2%</td>
</tr>
<tr>
<td>6. Lauric acid methyl ester (C12:0)</td>
<td>4%</td>
</tr>
<tr>
<td>7. Tridecanoic acid methyl ester (C13:0)</td>
<td>2%</td>
</tr>
<tr>
<td>8. Myristic acid methyl ester (C14:0)</td>
<td>4%</td>
</tr>
<tr>
<td>9. Myristoleic acid methyl ester (C14:1)</td>
<td>2%</td>
</tr>
<tr>
<td>10. Pentadecanoic acid methyl ester (C15:0)</td>
<td>2%</td>
</tr>
<tr>
<td>11. Cis-10-heptadecenoic acid methyl ester (C15:1)</td>
<td>2%</td>
</tr>
<tr>
<td>12. Palmitic acid methyl ester (C16:0)</td>
<td>6%</td>
</tr>
<tr>
<td>13. Palmitoleic acid methyl ester (C16:1)</td>
<td>2%</td>
</tr>
<tr>
<td>14. Heptadecanoic acid methyl ester (C17:0)</td>
<td>2%</td>
</tr>
<tr>
<td>15. Cis-10-heptadecenoic acid methyl ester (C17:1)</td>
<td>2%</td>
</tr>
<tr>
<td>16. Stearic acid methyl ester (C18:0)</td>
<td>4%</td>
</tr>
<tr>
<td>17. Elaidic acid methyl ester (C18:1n9t)</td>
<td>2%</td>
</tr>
<tr>
<td>18. Oleic acid methyl ester (C18:1n9c)</td>
<td>4%</td>
</tr>
<tr>
<td>19. Linolelaidic acid methyl ester (C18:2n6t)</td>
<td>2%</td>
</tr>
<tr>
<td>20. Linoleic acid methyl ester (C18:2n6c)</td>
<td>2%</td>
</tr>
<tr>
<td>21. Arachidic acid methyl ester (C20:0)</td>
<td>4%</td>
</tr>
<tr>
<td>22. γ-linolenic acid methyl ester (C18:3n6)</td>
<td>2%</td>
</tr>
<tr>
<td>23. Cis-11-eicosenoic acid methyl ester (C20:1)</td>
<td>2%</td>
</tr>
<tr>
<td>24. Linolenic acid methyl ester (C18:3n6)</td>
<td>2%</td>
</tr>
<tr>
<td>25. Heneicosanoic acid methyl ester (C21:0)</td>
<td>2%</td>
</tr>
<tr>
<td>26. Cis-11, 14-eicosadienoic acid methyl ester (C20:2)</td>
<td>2%</td>
</tr>
<tr>
<td>27. Behenic acid methyl ester (C22:0)</td>
<td>4%</td>
</tr>
<tr>
<td>28. Cis-8, 11, 14-eicosatrienoic acid methyl ester (C20:3n6)</td>
<td>2%</td>
</tr>
<tr>
<td>29. Erucic acid methyl ester (C22:1n9)</td>
<td>2%</td>
</tr>
<tr>
<td>30. Cis-11, 14, 17-eicosatrienoic acid methyl ester (C20:3n3)</td>
<td>2%</td>
</tr>
<tr>
<td>31. Arachidonic acid methyl ester (C20:4n6)</td>
<td>2%</td>
</tr>
<tr>
<td>32. Tricosanoic acid methyl ester (C23:0)</td>
<td>2%</td>
</tr>
<tr>
<td>33. Cis-13, 16-docosadienoic acid methyl ester (C22:2)</td>
<td>2%</td>
</tr>
<tr>
<td>34. Lignoceric acid methyl ester (C24:0)</td>
<td>2%</td>
</tr>
<tr>
<td>35. Cis-5, 8, 11, 14, 17-eicosapentaenoic acid methyl ester (C20:5n3)</td>
<td>2%</td>
</tr>
<tr>
<td>36. Nervonic acid methyl ester (C24:1)</td>
<td>2%</td>
</tr>
<tr>
<td>37. Cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid methyl ester (C22:6n3)</td>
<td>2%</td>
</tr>
</tbody>
</table>