CONTENTS

List of Figures .. i
List of Tables .. iii
List of Abbreviations iv
Abstract ... vii

Chapters

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Supply chain management system</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Need of supply chain management system</td>
<td>4</td>
</tr>
<tr>
<td>1.3. Conceptual model of supply chain management system</td>
<td>5</td>
</tr>
<tr>
<td>1.4. Supply chain management dimensions</td>
<td>7</td>
</tr>
<tr>
<td>1.5. Supply chain decisions</td>
<td>9</td>
</tr>
<tr>
<td>1.6. Challenges faced in supply chain management system</td>
<td>10</td>
</tr>
<tr>
<td>1.7. Implementing supply chain management system</td>
<td>12</td>
</tr>
<tr>
<td>1.7.1. AI technologies in SCM implementation</td>
<td>13</td>
</tr>
<tr>
<td>1.8. Bullwhip effect in supply chain system</td>
<td>14</td>
</tr>
<tr>
<td>1.8.1. Causes of bullwhip effect</td>
<td>15</td>
</tr>
<tr>
<td>1.8.2. Impacts of bullwhip effect</td>
<td>16</td>
</tr>
<tr>
<td>1.8.3. Stages of bullwhip effect</td>
<td>17</td>
</tr>
<tr>
<td>1.8.4. Measuring bullwhip effect</td>
<td>19</td>
</tr>
<tr>
<td>1.9. Problem statement</td>
<td>20</td>
</tr>
<tr>
<td>1.10. Research aims and objectives</td>
<td>20</td>
</tr>
<tr>
<td>1.10.1. Primary research objectives</td>
<td>20</td>
</tr>
<tr>
<td>1.10.2. Secondary research objectives</td>
<td>21</td>
</tr>
<tr>
<td>1.11. Scope of research</td>
<td>21</td>
</tr>
<tr>
<td>1.12. Research methodologies</td>
<td>22</td>
</tr>
<tr>
<td>1.13. Data collection</td>
<td>23</td>
</tr>
<tr>
<td>1.13.1. Primary data</td>
<td>23</td>
</tr>
<tr>
<td>1.13.2. Secondary data</td>
<td>23</td>
</tr>
</tbody>
</table>
1.13.3. Data analysis
1.14. Significance of research
1.15. Organization of thesis

2 Review of Literature

3 Multi-agent system
 3.1. Why multi-agent system?
 3.2. Intelligent agent
 3.3. Structure of intelligent agent
 3.3.1. Agent programs
 3.3.2. Agent architectures
 3.4. Type of intelligent agent
 3.4.1. Reflex agents
 3.4.2. Goal-based agents
 3.4.3. Utility-based agents
 3.4.4. Interface agents
 3.4.5. Mobile agents
 3.4.6. Information agents
 3.4.7. Multi-agent system
 3.4.8. Collaborative agents
 3.5. Communication between agents
 3.6. BDI architecture of intelligent agent
 3.7. Agent-oriented programming
 3.7.1. Why java?
 3.7.2. Creating intelligent agent in java
 3.8. Multi-agent system
 3.8.1. Features of multi-agent system
 3.8.2. Comparison with conventional agents
 3.8.3. Methodologies for MAS development
 3.8.4. Agent platforms for MAS development
 3.8.5. Agent behaviors
 3.8.6. Teamwork in multi-agent environments
3.9. Coordination in multi-agent system 73
3.10. Multi-agent based simulation 75

4 Case-based reasoning 76
 4.1. Why case-based reasoning 76
 4.2. Case-based reasoning 77
 4.3. CBR cycle 79
 4.3.1. Components of CBR system 80
 4.3.2. CBR tasks 81
 4.4. Relationship with other approaches 85
 4.4.1. Memory-based reasoning 85
 4.4.2. Analogical reasoning 85
 4.4.3. Information retrieval system & database 85
 4.4.4. Learning methods 86
 4.4.5. Rule-based reasoning 86
 4.4.6. Human reasoning 86
 4.5. Advantages of CBR approach 87
 4.6. Case retrieval phase 88
 4.6.1. Various case retrieval algorithms 90
 4.7. Case reuse phase 91
 4.8. Case retrieval phase 93
 4.9. Case retain phase 94
 4.10. CBR tools 95
 4.11. Distributed case-based reasoning 97
 4.11.1. Single agent single case base 97
 4.11.2. Single agent multiple case base 98
 4.11.3. Multi agent single case base 98
 4.11.4. Multi agent multiple case base 98
 4.12. Distributed case base 99

5 MAS based SCM system 101
 5.1. Existing MAS based supply chain system 101
 5.2. Fundamental elements 102
5.3. Strategic elements

5.4. Organization of agents in existing MAS based SCM
5.4.1. Production agent
5.4.2. Supplier agent
5.4.3. Manufacturer agent
5.4.4. Distributor agent
5.4.5. Retailer agent
5.4.6. Transportation agent
5.4.7. Inventory agent
5.4.8. Demand agent
5.4.9. Order processing agent
5.4.10. Flow control agent
5.4.11. Information agent
5.4.12. Manager agent
5.4.13. External agent

5.5. Problem faced in existing MAS based SCM
5.5.1. Coordination problem
5.5.2. Incapability of learning

5.6. Proposed solution for problem faced in MAS based SCM
5.6.1. CBR-BDI architecture
5.6.2. Supply chain orchestration
5.6.3. Distributed case base

5.7. Orchestrator agent

5.8. Internal working of various intelligent agents

6. Orchestrating supply chain activities
6.1. Service orchestration
6.1.1. Challenges of service orchestration & SOA
6.2. Supply chain orchestration
6.2.1. Benefits of supply chain orchestration
6.3. Orchestration engine
6.3.1. Orchestration language
8.2. Demand forecasting updating
8.2.1. Demanding forecasting techniques
8.2.2. Quantitative forecasting techniques
8.2.2.1. Time series forecasting methods
8.2.2.2. Causal forecasting methods
8.2.3. Qualitative forecasting techniques
8.3. Designing of demand CBR-BDI agent
8.3.1. Demanding forecasting procedure
8.3.2. Architecture of demand CBR-BDI agent
8.4. Enhanced demand forecasting by demand CBR-BDI agent
8.5. Order batching problem
8.5.1. Roots of order batching
8.5.2. Batching
8.5.3. Different order batching form
8.5.4. Bullwhip effect and batch size
8.6. Maintaining reduced batch size with flow CBR-BDI agent
8.6.1. Ways of reducing batch size
8.6.2. Architecture of flow CBR-BDI agent
8.7. Price fluctuation
8.7.1. Roots of price fluctuations
8.7.2. Effects of price fluctuations
8.8. Managing price fluctuation with retailer CBR-BDI agent
8.8.1. Selecting pricing strategies
8.8.2. Architecture of retailer CBR-BDI agent
8.9. Rationing and shortage gaming
8.9.1. Roots of rationing and shortage gaming
8.10. Resolving rationing and shortage gaming
9. Implementation
9.1. Java agent development environment
9.1.1. Containers and platforms
9.1.2. Main packages
9.2. jcollibri tool
9.2.1. Main features
9.3. Proposed CBR-BDI intelligent agent tool
9.3.1. EJADE
9.3.2. Colibri studio
9.3.3. Eclipse IDE
9.3.4. Running the proposed tool
9.4. Constructing CBR-BDI intelligent agent
9.4.1. PreCycle phase
9.4.2. Cycle phase
9.4.3. PostCycle phase
9.4.4. Defining the case structure
9.4.5. Selecting the case base organization
9.4.6. Configuring case base connector
9.4.7. Setting up the similarity
9.5. Implementing proposed MAS based SCM system
9.5.1. Class diagram
9.5.2. Use case diagram
9.5.3. Activity diagram
9.6. Executing proposed MAS based SCM system
10 Result analysis and conclusion
10.1. Result analysis
10.1.1. Face validation
10.1.2. Face validation process
10.1.3. Face validation result
10.1.4. Practical implications of the research
10.2. Conclusion
10.3. Future scope
11 References
Publications
Appendix