Chapter 6

Clique irreducible and weakly clique irreducible graphs

This chapter deals with two graph classes - the clique irreducible graphs and the weakly clique irreducible graphs. A new graph class called the clique vertex irreducible graphs is also defined. We characterize line graphs and its iterations, Gallai graphs, anti-Gallai graphs and its iterations, cographs and distance hereditary graphs which are clique irreducible, clique vertex irreducible and weakly clique irreducible graphs.

Some results of this chapter are included in the following papers.

(1) Clique irreducibility and clique vertex irreducibility of graphs. (communicated).
(3) On weakly clique irreducible graphs, (communicated).
Chapter 6 : Clique irreducible and weakly clique irreducible graphs

6.1 Iterations of the line graph

In this section the line graphs and all its iterations which are clique irreducible and clique vertex irreducible are characterized.

Theorem 6.1.1. Let G be a graph. The line graph $L(G)$ is clique vertex irreducible if and only if G satisfies the following conditions.

(1) Every triangle in G has at least two vertices of degree two.

(2) Every vertex of degree greater than one in G has a pendant vertex attached to it, except for the vertices of degree two lying in a triangle.

Proof. Let G be a graph which satisfies the conditions (1) and (2). The cliques of $L(G)$ are induced by the vertices corresponding to the edges in G which are incident on a vertex of degree at least three, the edges in G which are incident on a vertex of degree two and which do not lie in a triangle and by the edges in G which lie in a triangle. By (2), the cliques in $L(G)$ induced by the vertices corresponding to the edges in G which are incident on a vertex, have a vertex which does not lie in any other clique of $L(G)$. By (1), the cliques in $L(G)$ induced by the vertices which correspond to the edges in G which lie in a triangle, have a vertex which does not lie in any other clique of $L(G)$. Therefore, G is clique vertex irreducible.

Conversely, assume that $L(G)$ is a clique vertex irreducible graph. Let $< u_1, u_2, u_3 >$ be a triangle in G. Let e_1, e_2, e_3 be the vertices in $L(G)$ which correspond to the edges u_1u_2, u_2u_3, u_3u_1 in G. $T = < e_1, e_2, e_3 >$ is a clique in $L(G)$. If $d(u_i) > 2$ for two u_i, u_1 and u_2, then there exist v_1 and v_2 (not necessarily different, but different from u_3) such that u_i is adjacent to v_i for $i = 1, 2$. But then, the vertices e_1 and e_3 will be present in the clique induced by the edges incident
on the vertex \(u_1 \) and the vertices \(e_2 \) and \(e_3 \) will be present in the clique induced by the edges incident on the vertex \(u_2 \). Therefore, every vertex in \(T \) belongs to another clique in \(L(G) \) which is a contradiction to the assumption that \(L(G) \) is clique vertex irreducible. Hence every triangle in \(G \) has at least two vertices of degree two.

Now, let \(u \in V(G) \) and \(N(u) = \{u_1, u_2, ..., u_p\} \), where \(p \geq 2 \) and if \(p = 2 \) then \(u_1 \) is not adjacent to \(u_2 \). Let \(e_i \) be the vertex in \(L(G) \) corresponding to the edge \(uu_i \) in \(G \) for \(i = 1, 2, ..., p \). Let \(C \) be the clique \(< e_1, e_2, ..., e_p > \) in \(L(G) \). If \(u \) has no pendant vertex attached to it then every \(u_i \) has a neighbor \(v_i \neq u \) for \(i = 1, 2, ..., p \). The \(v_i \)'s are not necessarily pairwise different. Moreover, some \(v_i \) can be equal to some \(u_j \) with \(j \neq i \), except in the case \(p = 2 \). Therefore, for each \(i \), every \(e_i \) in \(L(G) \) will be present in another clique, either induced by the edges incident on the vertex \(u_i \) in \(G \) or by the edges in a triangle containing \(u \) and \(u_i \) in \(G \). But this is a contradiction to the assumption that \(L(G) \) is clique vertex irreducible. Hence, every vertex of degree greater than one in \(G \) has a pendant vertex attached to it, except for the vertices of degree two which lie in a triangle.

Fig : 6.1 gives an example of a graph whose line graph is clique vertex irreducible.

\[\text{Fig : 6.1} \]

Theorem 6.1.2. Let \(G \) be a connected graph. The second iterated line graph \(L^2(G) \) is clique vertex irreducible if and only if \(G \) is one of the following graphs.
Proof. By Theorem 6.1.1, $L^2(G)$ is clique vertex irreducible if and only if

(1) Every triangle in $L(G)$ has at least two vertices of degree two.

(2) Every vertex of degree greater than one in $L(G)$ has a pendant vertex attached to it, except for the vertices of degree two which lie in a triangle.

By (2), every non-pendant edge in G must have a pendant edge attached to it on one end vertex and the degree of that end vertex must be two.

Case 1 : $L(G)$ has a triangle.

A triangle in $L(G)$ corresponds to a triangle or a $K_{1,3}$ (need not be induced) in G. Let it correspond to a triangle in G. If any of the vertices of this triangle has a neighbor outside the triangle, then two vertices in the corresponding triangle in $L(G)$ have neighbors outside the triangle, which is a contradiction. Therefore, since G is connected, in this case G must be K_3.

If the triangle in $L(G)$ corresponds to a $K_{1,3}$ in G, then two of the edges of this $K_{1,3}$ cannot have any other edge incident on any of its end vertices. Therefore, G cannot have a vertex of degree greater than three. Moreover, two vertices of $K_{1,3}$ in G must be pendant vertices. Again, by (2) and since G is connected, we conclude that G is either $K_{1,3}$ or the graph (vii).

Case 2 : $L(G)$ has no triangle.
Chapter 6: Clique irreducible and weakly clique irreducible graphs

Since $L(G)$ has no triangle, G cannot have a K_3 or a vertex of degree greater than or equal to 3. Therefore, since G is connected, G must be a path or a cycle of length greater than three. Again, by (2), G cannot be a path of length greater than five or a cycle. Therefore G is K_2, P_3, P_4 or P_5.

Corollary 6.1.3. Let G be a connected graph. The n^{th} iterated line graph $L^n(G)$ is clique vertex irreducible if and only if G is K_3, $K_{1,3}$ or P_k where $n + 1 \leq k \leq n + 3$, for $n \geq 3$.

Theorem 6.1.4. The line graph $L(G)$ is clique irreducible if and only if every triangle in G has a vertex of degree two.

Proof. Let G be a graph such that every triangle in G has a vertex of degree two. Let C be a clique in $L(G)$.

Case 1: The clique C is induced by the vertices corresponding to the edges in G which are incident on a vertex of degree at least three.

An edge of C can be present in another clique of $L(G)$ if and only if the corresponding pair of edges in G lies in a triangle. Thus, if every edge of C lies in another clique of $L(G)$, then G has an induced K_p, where p is at least four. But, this contradicts the assumption that every triangle in G has a vertex of degree two.

Case 2: The clique C is induced by the vertices corresponding to the edges in G which are incident on a vertex of degree two and which do not lie in a triangle.

In this case, C is K_2 which always has an edge of its own.

Case 3: The clique C is induced by the vertices corresponding to the edges which lie in a triangle T in G.
Since \(T \) has a vertex \(v \) of degree two, the vertices corresponding to the edges which are incident on \(v \) induce an edge in \(C \) which does not lie in any other clique of \(L(G) \).

Therefore, \(G \) is clique irreducible.

Conversely, assume that \(G \) is a clique irreducible graph. Let \(< u_1, u_2, u_3 >\) be a triangle in \(G \). Let \(e_1, e_2, e_3 \) be the vertices in \(L(G) \) which correspond to the edges \(u_1u_2, u_2u_3, u_3u_1 \) of \(G \). \(T = < e_1, e_2, e_3 > \) is a clique in \(L(G) \). If \(d(u_i) > 2 \) for each \(i \), there exist \(v_1, v_2, v_3 \) such that \(u_i \) is adjacent to \(v_i \) for \(i = 1, 2, 3 \) (\(v_1, v_2 \) and \(v_3 \) are not necessarily different, but they are different from \(u_1, u_2 \) and \(u_3 \)). Then the edges \(e_1e_2, e_2e_3 \) and \(e_3e_1 \) of \(L(G) \) will be present in the cliques induced by edges which are incident on the vertices \(u_1, u_2 \) and \(u_3 \) respectively. Therefore, every edge in \(T \) is in another clique of \(L(G) \), which is a contradiction. \(\Box \)

Theorem 6.1.5. The second iterated line graph \(L^2(G) \) is clique irreducible if and only if \(G \) satisfies the following conditions.

1. Every triangle in \(G \) has at least two vertices of degree two.
2. Every vertex of degree three has at least one pendant vertex attached to it.
3. \(G \) has no vertex of degree greater than or equal to four.

Proof. Let \(G \) be a graph such that \(L^2(G) \) is clique irreducible. By Theorem 6.1.4, every triangle in \(L(G) \) has a vertex of degree two. Then, we have the following cases.

Case 1: The triangle in \(L(G) \) corresponds to a triangle in \(G \).

Let \(< u_1, u_2, u_3 >\) be a triangle in \(G \). Let \(e_1, e_2, e_3 \) be the vertices in \(L(G) \) which correspond to the edges \(u_1u_2, u_2u_3, u_3u_1 \) of \(G \). At least one of the vertices
of the triangle \(<e_1, e_2, e_3>\) in \(L(G)\) must be of degree two. Let \(e_1\) be a vertex of degree two in \(L(G)\). Since \(e_2\) and \(e_3\) belong to \(N(e_1)\) in \(L(G)\), \(e_1\) has no other neighbors in \(L(G)\). Therefore, the corresponding end vertices, \(u_1\) and \(u_2\) in \(G\) have no other neighbors. Hence (1) holds.

Case 2: The triangle in \(L(G)\) corresponds to a \(K_{1,3}\) (need not be induced) in \(G\).

Let \(e_1, e_2, e_3\) be the vertices in \(L(G)\) corresponding to the edges \(vu_1, uu_2, uu_3\) in \(G\). At least one of the vertices of the triangle \(<e_1, e_2, e_3>\) in \(L(G)\) must be of degree two. Let \(e_1\) be a vertex of degree two in \(L(G)\). Vertices \(e_2\) and \(e_3\) belong to \(N(e_1)\) in \(L(G)\) and hence \(e_1\) has no other neighbors in \(L(G)\). Therefore, the corresponding end vertices, \(u\) and \(u_1\) in \(G\) have no other neighbors. Since \(u\) has no other neighbors (3) holds and since \(u_1\) has no other neighbors (2) holds.

Conversely, assume that \(G\) is a graph which satisfies all the three conditions. A triangle in \(L(G)\) corresponds to a triangle or a \(K_{1,3}\) (need not be induced) in \(G\). A triangle in \(L(G)\) which corresponds to a triangle in \(G\) has at least one vertex of degree two by (1). Again, a triangle in \(L(G)\) which corresponds to a \(K_{1,3}\) in \(G\) has at least one vertex of degree two by (2) and (3). Therefore, every triangle in \(L(G)\) has at least one vertex of degree two and by Theorem 6.1.4, \(L^2(G)\) is clique irreducible.

\[\square\]

Theorem 6.1.6. Let \(G\) be a connected graph. If \(G \neq K_3\) then, \(L^3(G)\) is clique irreducible if and only if \(G\) satisfies the following conditions.

(1) \(G\) is triangle free.

(2) \(G\) has no vertex of degree greater than or equal to four.

(3) At least two of the vertices of every \(K_{1,3}\) in \(G\) are pendant vertices.

(4) If \(uv\) is an edge in \(G\), then either \(u\) or \(v\) has degree less than or equal to two.
Chapter 6: Clique irreducible and weakly clique irreducible graphs

Proof. Let $L^3(G)$ be clique irreducible. By Theorem 6.1.5, $L(G)$ satisfies,

(1') Every triangle in $L(G)$ has at least two vertices of degree 2.

(2') Every vertex of degree three in $L(G)$ has at least one pendant vertex attached to it.

(3') $L(G)$ has no vertex of degree greater than or equal to 4.

A triangle in $L(G)$ corresponds to a triangle or a $K_{1,3}$ (need not be induced) in G. Every triangle in $L(G)$ has at least two vertices of degree two implies that every triangle in G has its three vertices of degree two. i.e: G is a triangle, because G is connected. Since $G \neq K_3$, G must be triangle free. Also, every $K_{1,3}$ in G has at least two pendant vertices and the degree of a vertex cannot exceed three. Therefore (1), (2) and (3) hold. Again (3') implies that no edge in G can have more than three edges incident on its end vertices. Therefore, (4) holds.

Conversely, assume that the given conditions hold. Since G is triangle free, a triangle in $L(G)$ corresponds to a $K_{1,3}$ (need not be induced) in G. Therefore, by (2) and (3) every triangle in $L(G)$ has at least two vertices of degree two.

Let e be a vertex of degree three in $L(G)$ and let uv be the corresponding edge in G. Since e is of degree three in $L(G)$, the number of edges incident on u in G together with the number of edges incident on v in G is three. If u (or v) has three more edges incident on it then u (or v) will be of degree at least four which is a contradiction to the condition (2). Therefore, u has two neighbors and v has one neighbor (or vice versa) in G. Let u_1 and u_2 be the neighbors of u, and let v_1 be the neighbor of v in G. Then $<u, v, u_1, u_2> = K_{1,3}$ in G and hence at least two of v, u_1 and u_2 must be pendant vertices. Since v is not a pendant vertex, u_1 and u_2 must be pendant vertices. Therefore, e has two pendant vertices attached to it in $L(G)$ corresponding to the edges uu_1 and uu_2 in G. Hence (2') is satisfied.
Again, (2), (3) and (4) together imply (3'). Since the conditions (1'), (2') and (3') are satisfied, by Theorem 6.1.5, $L^3(G)$ is clique irreducible.

Theorem 6.1.7. Let G be a connected graph. The fourth iterated line graph $L^4(G)$ is clique irreducible if and only if G is $K_3, K_{1,3}, P_n$ with $n \geq 5$ or C_n with $n \geq 4$.

Proof. Let $L^4(G)$ be clique irreducible. Then by Theorem 6.1.6, if $L(G) \neq K_3$ then $L(G)$ must be triangle free. If $L(G) = K_3$ then G is either K_3 or $K_{1,3}$. If $L(G)$ is triangle free then G is triangle free and cannot have vertices of degree greater than or equal to three. Therefore, G is either a path or a cycle of length greater than three.

Conversely, if G is $K_3, K_{1,3}, P_n$ or C_n then $L^4(G)$ is either a triangle, a path or a cycle and all of them are clique irreducible.

Corollary 6.1.8. For $n \geq 5$, $L^n(G)$ is clique irreducible if and only if it is non-empty and $L^4(G)$ is clique irreducible.

6.2 Gallai graphs

In this section, we give structural and forbidden subgraph characterizations for the Gallai graph to be clique irreducible, clique vertex irreducible and weakly clique irreducible.

Theorem 6.2.1. The Gallai graph $\Gamma(G)$ is clique vertex irreducible if and only if for every $v \in V(G)$, every maximal independent set I in $N(v)$ with $|I| \geq 2$ contains a vertex u such that $N(u) - \{v\} = N(v) - I$.
Chapter 6: Clique irreducible and weakly clique irreducible graphs

Proof. Let G be a graph such that its Gallai graph $\Gamma(G)$ is clique vertex irreducible. A clique C in $\Gamma(G)$ of size at least two is induced by the vertices corresponding to the edges which are incident on a common vertex $v \in V(G)$ whose other end vertices form a maximal independent set I of size at least two in $N(v)$. Let $I = \{v_1, v_2, \ldots, v_p\}$, where $p \geq 2$, be a maximal independent set in $N(v)$. Let e_i be the vertex in $\Gamma(G)$ corresponding to the edge vv_i in G for $i = 1, 2, \ldots, p$. Let C be the clique $\langle e_1, e_2, \ldots, e_p \rangle$ in $\Gamma(G)$. Let e_i be the vertex in C which does not belong to any other clique in G. Therefore, e_i has no neighbors in $\Gamma(G)$ other than those in C. Hence, $N(v_i) - \{v\} = N(v) - I$.

Conversely, assume that for every $v \in V(G)$, every maximal independent set $I = \{v_1, v_2, \ldots, v_p\}$ in $N(v)$ contains a vertex u such that $N(u) - \{v\} = N(v) - I$. If C is a clique of size one, it contains a vertex of its own. Otherwise, let C be defined as above. By our assumption, there exists a vertex $u = v_i$ such that $N(u) - \{v\} = N(v) - I$. Therefore, e_i has no neighbors outside C. Hence C has a vertex e_i of its own. \qed

Fig: 6.2 gives an example of a graph whose Gallai graph is clique vertex irreducible.

\begin{center}
\includegraphics[width=0.5\textwidth]{fig.png}
\end{center}

Fig: 6.2

Theorem 6.2.2. If $\Gamma(G)$ is clique vertex reducible then G contains one of the graphs in Fig: 6.3 as an induced subgraph.
Chapter 6: Clique irreducible and weakly clique irreducible graphs

Proof. Let G be a graph such that $\Gamma(G)$ is clique vertex reducible and let C be a clique in $\Gamma(G)$ such that each vertex of C belongs to some other clique in $\Gamma(G)$. Consider the order relation \leq among the vertices of C where $e \leq e'$ if $N[e] \leq N[e']$. If \leq is a total ordering, then every vertex adjacent to the minimum vertex e is also adjacent to all the vertices in C. Therefore, by maximality of C, e cannot have neighbors outside C. This is a contradiction to the assumption that e belongs to some other clique of $\Gamma(G)$. So, there exist two vertices e_1 and e_2 in C which are not comparable. That is, there exist vertices f_1 and f_2 of $\Gamma(G)$ such that e_i is adjacent to f_j if and only if $i = j$. Let uv_1 and uv_2 be the edges corresponding to e_1 and e_2, respectively. Then v_1 and v_2 are non-adjacent. Let u_1 and u_2 be the end points of f_1 and f_2, respectively, which are both different from v. v_1 and v_2.

Case 1: Both f_1 and f_2 correspond to the edges incident to v.

In this case, u_1 and u_2 are adjacent to v. u_i is adjacent to v_j if and only if $i \neq j$ and u_1 and u_2 can be either adjacent or not. Therefore $< v, v_1, v_2, u_1, u_2 >$ is the graph (i) or (ii) in Fig : 6.3.

Case 2: None of f_1 and f_2 correspond to the edges incident to v.

In this case, u_1 and u_2 are adjacent to v_1 and v_2, respectively, and not to v. If
Chapter 6: Clique irreducible and weakly clique irreducible graphs

If \(u_1 = u_2 \) then \(G \) contains an induced \(C_4 \). If \(u_1 \neq u_2 \) and \(G \) does not contain an induced \(C_4 \), then \(< v, v_1, v_2, u_1, u_2 > \) is either \(P_5 \) or \(C_5 \).

Case 3: Exactly one of \(f_1 \) and \(f_2 \) correspond to the edges incident to \(v \), say \(f_1 \).

In this case, \(u_1 \) is adjacent to both \(v \) and \(v_2 \) and is not adjacent to \(v_1 \). The vertex \(u_2 \) is adjacent to \(v_2 \) and is not adjacent to \(v \). If \(u_2 \) is adjacent to \(v_1 \) then \(G \) contains an induced \(C_4 \). Otherwise, \(< v, v_1, v_2, u_1, u_2 > \) is the graph (vi) or (vii) in Fig: 6.3.

\[\square \]

Remark 6.2.1. The converse need not be true. For example consider the graph \(G \) in Fig: 6.4. It contains (iv) in Fig: 6.3 as an induced subgraph. Still \(\Gamma(G) \) is clique vertex irreducible.

![Graphs](image)

Fig: 6.4

Theorem 6.2.3. The Gallai graph \(\Gamma'(G) \) is clique irreducible if and only if for every \(v \in V(G) \), \(< N(v) >^c \) is clique irreducible.

Proof. A clique \(C \) in \(\Gamma(G) \) of size at least two is induced by the vertices corresponding to the edges which are incident on a common vertex \(v \in V(G) \) whose other end vertices form a maximal independent set \(I \) of size at least two in \(N(v) \). Therefore, \(C \) has an edge which does not belong to any other clique of \(\Gamma(G) \) if and only if \(I \) has a pair of vertices both of which together does not belong to any other maximal independent set in \(N(v) \). But, this happens if and only if every clique of size at least two in \(< N(v) >^c \) has an edge which does not belong to any other
clique in $<N(v)>^e$, since a maximal independent set in a graph corresponds to a
clique in its complement.

Theorem 6.2.4. The second iterated Gallai graph $\Gamma^2(G)$ is clique irreducible if
and only if for every $uv \in E(G)$, either $<N(u) - N(v)>$ and $<N(v) - N(u)>$
are clique vertex irreducible or one among them is a clique and the other is clique
irreducible.

Proof. By Theorem 6.2.3, $\Gamma^2(G)$ is clique irreducible if and only if for every $e \in V(\Gamma(G))$, $<N(e)>^e$ is clique irreducible.

Let $e = uv \in E(G)$, $N(u) - N(v) = \{u_1, u_2, ..., u_p\}$ and $N(v) - N(u) = \{v_1, v_2, ..., v_l\}$. Also let $e_i = uu_i$ for $i = 1, 2, ..., p$ and $f_j = vv_j$ for $j = 1, 2, ..., l$. $N_{\Gamma(G)}(e) = \{e_1, e_2, ..., e_p, f_1, f_2, ..., f_l\}$. $<N(e)>^e$ is clique irreducible if and only if every maximal independent set I in $<N(e)>$ has a pair of vertices of its own. e_i
is not adjacent to e_j if and only if u_i is adjacent to u_j. Similarly, f_i is not adjacent
to f_j if and only if v_i is adjacent to v_j. So, $I = \{e_{i_1}, e_{i_2}, ..., e_{i_k}, f_{j_1}, f_{j_2}, ..., f_{j_l}\}$ if
and only if $\{u_{i_1}, u_{i_2}, ..., u_{i_k}\}$ is a clique in $<N(u) - N(v)>$ and $\{v_{j_1}, v_{j_2}, ..., v_{j_l}\}$ is
a clique in $N(v) - N(u)$. Therefore, every maximal independent set I in $N_{\Gamma(G)}(e)$
has a pair of vertices of its own if and only if either both $<N(u) - N(v)>$ and
$<N(v) - N(u)>$ are clique vertex irreducible or one among them is a clique and
the other is clique irreducible.

Theorem 6.2.5. If $\Gamma(G)$ is clique reducible then G contains one of the following
graphs as an induced subgraph.
Proof. Let \(\Gamma(G) \) be a clique reducible graph. By Lemma 1.1.9 and Lemma 1.1.12, \(\Gamma(G) \) contains at least one of the Hajo's graph as an induced subgraph. A Hajo's graph is an induced subgraph of \(\Gamma(G) \) if and only if \(G \) contains one of the graphs in Fig : 6.5 as an induced subgraph. Hence the theorem.

Remark 6.2.2. The converse need not be true. Let \(G \) be the graph in Fig : 6.6.

\[
V(G) = \{v, v_1, v_2, v_3, u_1, u_2, u_3, w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8\}. \]

Let \(< v, v_1, v_2, v_3, u_1, u_2, u_3 \) be the graph (i) in Fig : 6.5 and let \(w_i \)s for \(i = 1, 2, \ldots, 8 \) induce a complete graph.
Also, let w_1 be adjacent to $\{v_1, v_2, v_3\}$, w_2 be adjacent to $\{v_1, v_2, u_3\}$, w_3 be adjacent to $\{v_1, u_2, v_3\}$, w_4 be adjacent to $\{v_1, u_2, u_3\}$, w_5 be adjacent to $\{u_1, v_2, v_3\}$, w_6 be adjacent to $\{u_1, v_2, u_3\}$, w_7 be adjacent to $\{u_1, u_2, v_3\}$, w_8 be adjacent to $\{u_1, u_2, u_3\}$, and v adjacent to w_i for $i = 1, 2, \ldots, 8$.

In $\Gamma(G)$ the vertices corresponding to the edges with one end vertex v induces K_6 minus a perfect matching in which the vertices of each of the eight triangles are adjacent to another vertex each. The remaining vertices induce the graph $H = 4K_{1,8}$. Therefore, $\Gamma(G)$ is clique irreducible.

Theorem 6.2.6. The Gallai graph of a graph G, $\Gamma(G)$, is weakly clique irreducible if and only if for every vertex $u \in V(G)$, $< N(u) >^c$ is weakly clique irreducible.

Proof. Let G be a graph such that $\Gamma(G)$ is weakly clique irreducible. Let u_1u_2 be an edge in $< N(u) >^c$ and let e_i be the vertex in $\Gamma(G)$ corresponding to the edge uu_i in G for $i = 1, 2$. Since $\Gamma(G)$ is weakly clique irreducible and e_1e_2 is an edge in $\Gamma(G)$, let $C = < e_1, e_2, \ldots, e_k >$ be the essential clique in $\Gamma(G)$ which contains the edge e_1e_2. For $i = 3, 4, \ldots, k$, let u_1u_i be the edge in G corresponding to the vertex e_i in $\Gamma(G)$. Let $e_i e_j$ be the essential edge in C. Therefore, there exist no independent set in $N(u)$ which contains both the vertices u_i and u_j. Hence, there is no clique in $< N(u) >^c$ which contains the edge u_iu_j, other than the clique $S = < u_1, u_2, \ldots, u_k >$. Therefore, S is an essential clique in $< N(u) >^c$ which contains the edge u_1u_2. Since the edge u_1u_2 was arbitrary, $< N(u) >^c$ is weakly clique irreducible.

The converse can be proved similarly. \qed
6.3 Iterations of the anti-Gallai graph

In this section the anti-Gallai graph and all its iterations which are clique irreducible, clique vertex irreducible and weakly clique irreducible are characterized.

Theorem 6.3.1. The anti-Gallai graph $\Delta(G)$ is clique vertex irreducible if and only if G does neither contain K_4 nor one of the Hajo’s graphs as an induced subgraph.

Proof. Let G be a graph which does neither contain K_4 nor one of the Hajo’s graphs as an induced subgraph. The cliques of $\Delta(G)$ are induced by the edges corresponding to the edges of G incident on a vertex of degree at least 3 whose other end vertices induce a complete graph and by the edges which lie in a triangle. In the first case G contains an induced K_4, which is a contradiction. Therefore, the cliques of $\Delta(G)$ are induced by the edges which lie in a triangle. Let $< u_1, u_2, u_3 >$ be a triangle in G. Let e_1, e_2, e_3 be the vertices in $\Delta(G)$ corresponding to the edges u_1u_2, u_2u_3, u_3u_1 in G. Then $< e_1, e_2, e_3 >$ is a clique in $\Delta(G)$. If a vertex e_i for $i = 1, 2, 3$ lies in another clique of $\Delta(G)$, then the edge corresponding to e_i lies in another triangle. Therefore, the end vertices of the edge corresponding to e_i in G has a neighbor v_i for $i = 1, 2, 3$. $v_i \neq v_j$ if $i \neq j$ and v_1, v_2, v_3 are not adjacent to u_3, u_1, u_2, respectively, since otherwise G contains a K_4, which is a contradiction. Then, $< u_1, u_2, u_3, v_1, v_2, v_3 >$ is one of the Hajo’s graphs, a contradiction. Hence, G is clique vertex irreducible.

Conversely, assume that G is clique vertex irreducible. If G contains K_4 or one of the Hajo’s graphs as an induced subgraph, then there exists a clique in $\Delta(G)$, corresponding to a triangle in G, which shares each of its vertices with some other
Lemma 6.3.2. If G is K_4-free then $\Delta(G)$ is diamond free.

Proof. Let G be a graph which does not contain K_4 as an induced subgraph. Therefore, a triangle in $\Delta(G)$ can only be induced by a triangle in G. If two vertices of the triangle in $\Delta(G)$ have a common neighbor, then it forces G to have a K_4, a contradiction. Therefore, $\Delta(G)$ is diamond free.

Theorem 6.3.3. The second iterated anti-Gallai graph $\Delta^2(G)$ is clique vertex irreducible if and only if G does not contain K_4 as an induced subgraph.

Proof. By Theorem 6.3.1, $\Delta^2(G)$ is clique vertex irreducible if and only if $\Delta(G)$ does neither contain K_4 nor one of the Hajo's graphs as an induced subgraph.

Let G be a graph which does not contain K_4 as an induced subgraph. Therefore, G does not contain K_5 as an induced subgraph and hence $\Delta(G)$ does not contain K_4 as an induced subgraph. Again, by Lemma 6.3.2, $\Delta(G)$ cannot have diamond as an induced subgraph and hence it does not contain any of the Hajo's graph as an induced subgraph. Hence, $\Delta^2(G)$ is clique vertex irreducible.

Conversely, assume that $\Delta^2(G)$ is clique vertex irreducible. If G contains K_4 as an induced subgraph then in $\Delta(G)$ the vertices corresponding to the edges of this K_4 induce K_6 minus a perfect matching which is the fourth Hajo's graph, a contradiction. Therefore, G does not contain K_4 as an induced subgraph.

Theorem 6.3.4. The n^{th} iterated anti-Gallai graph $\Delta^n(G)$ is clique vertex irreducible if and only if G does not contain K_{n+2} as an induced subgraph.

Proof. By Theorem 6.3.3, $\Delta^n(G)$ is clique vertex irreducible if and only if $\Delta^{n-2}(G)$
does not contain K_4 as an induced subgraph. $\Delta^{n-2}(G)$ does not contain K_4 as an induced subgraph if and only if $\Delta^{n-3}(G)$ does not contain K_5 as an induced subgraph. Proceeding like this, we get that $\Delta(G)$ does not contain K_{n+1} as an induced subgraph if and only if G does not contain K_{n+2} as an induced subgraph. Therefore, $\Delta^n(G)$ is clique vertex irreducible if and only if G does not contain K_{n+2} as an induced subgraph.

Theorem 6.3.5. The anti-Gallai graph $\Delta(G)$ is clique irreducible if and only if G does not contain K_4 as an induced subgraph.

Proof. Let G be a graph which does not contain K_4 as an induced subgraph. By Lemma 6.3.2 and Lemma 1.1.10, $\Delta(G)$ is clique irreducible.

Conversely, if G contains a $K_1 = \langle u_1, u_2, u_3, u_4 \rangle$, then it follows that the clique in $\Delta(G)$, corresponding to the triangle $\langle u_1, u_2, u_3 \rangle$ in G, shares each of its edges with some other clique. Therefore, if $\Delta(G)$ is clique irreducible, then G cannot have K_4 as an induced subgraph.

Theorem 6.3.6. The n^{th} iterated anti-Gallai graph $\Delta^n(G)$ is clique irreducible if and only if G does not contain an induced K_{n+3}.

Proof. By Theorem 6.3.5, $\Delta^n(G)$ is clique irreducible if and only if $\Delta^{n-1}(G)$ does not contain an induced K_4. $\Delta^{n-1}(G)$ does not contain an induced K_4 if and only if $\Delta^{n-2}(G)$ does not contain an induced K_5. Proceeding like this, we get, $\Delta(G)$ does not contain an induced K_{n+2} if and only if G does not contain an induced K_{n+3}. Therefore, $\Delta^n(G)$ is clique irreducible if and only if G does not contain an induced K_{n+3}.

Theorem 6.3.7. The anti-Gallai graph of a graph G, $\Delta(G)$ is weakly clique irreducible if and only if G is K_4-free.
Chapter 6: Clique irreducible and weakly clique irreducible graphs

Proof. Let $<u_1, u_2, ..., u_k>$ be a clique of size greater than or equal to four in G. Let e_{ij} be the vertex corresponding to the edge u_iu_j in G for $i, j \in \{1, 2, ..., k\}$ and $i \neq j$. (Note that $e_{ij} = e_{ji}$). Consider the edge $e_{12}e_{13}$ in $\Delta(G)$. The cliques in $\Delta(G)$ obtained from the clique $<u_1, u_2, ..., u_k>$ in G, which contains the edge $e_{12}e_{13}$ are $<e_{12}, e_{13}, ..., e_{1k}>$ and $<e_{12}, e_{23}, e_{31}>$. Both these cliques are not essential, since all of their edges are present in at least one of the cliques $<e_{21}, e_{23}, ..., e_{2k}>$, $<e_{31}, e_{32}, ..., e_{3k}>$ or $<e_{1i}, e_{ij}, e_{j1}>$ for $i, j \in \{3, 4, ..., k\}$ and $i \neq j$. Similarly, if there is any other clique which contains the vertices u_1, u_2 and u_3 in G, then the corresponding cliques in $\Delta(G)$ will not be essential. Therefore, $\Delta(G)$ is not weakly clique irreducible.

Conversely, assume that G is K_4-free. Then by Theorem 6.3.5, $\Delta(G)$ is clique irreducible and hence is weakly clique irreducible.

Corollary 6.3.8. The anti-Gallai graph of a graph G, $\Delta(G)$ is weakly clique irreducible if and only if it is clique irreducible.

Corollary 6.3.9. The n^{th} iterated anti-Gallai graph $\Delta^n(G)$ is weakly clique irreducible if and only if it is K_{n+3}-free.

6.4 Cographs

In this section the cographs which are clique irreducible, clique vertex irreducible and weakly clique irreducible are characterized.

Lemma 6.4.1. If G^c has at least three non-trivial components then G is clique reducible.
Chapter 6: Clique irreducible and weakly clique irreducible graphs

Proof. Let G be a graph such that G^c has at least three non trivial components. Let $H_1, H_2, ..., H_p$ be the components of G^c. Let $G_i = H_i^c$ for $i = 1, 2, ..., p$. Then, $G = G_1 \lor G_2 \lor ... \lor G_p$. Also, any clique of G is the join of the cliques of G_i s for $i = 1, 2, ..., p$. At least three of the H_i s are non-trivial and hence at least three of the G_i s have more than one clique. Let C_{ij} for $j = 1, 2$ be any two of the cliques of G_i for $i = 1, 2, 3$. Let S_i be a clique of G_i for $i = 4, 5, ..., p$. Consider the clique $C_{11} \lor C_{21} \lor C_{31} \lor S_4 \lor ... \lor S_p$. Every edge of this clique is present in at least one of the cliques $C_{11} \lor C_{21} \lor C_{31} \lor S_4 \lor ... \lor S_p$, $C_{12} \lor C_{21} \lor C_{31} \lor S_4 \lor ... \lor S_p$. Therefore, G is clique reducible.

Lemma 6.4.2. If G^c has at least two non-trivial components then G is clique vertex reducible.

Proof. Let G be a graph whose complement has at least two non trivial components. Let H_i, G_i, C_{ij} for $i = 1, 2, ..., p$ and $j = 1, 2$ and S_i for $i = 3, 4, ... p$ be defined as in the proof of Lemma 6.4.1 and consider the clique $C_{11} \lor C_{21} \lor C_{31} \lor S_4 \lor ... \lor S_p$. Every vertex of this clique is present in at least one of the cliques $C_{11} \lor C_{22} \lor C_{31} \lor S_4 \lor ... \lor S_p$, $C_{12} \lor C_{21} \lor C_{31} \lor S_4 \lor ... \lor S_p$. Therefore, G is clique vertex reducible.

Remark 6.4.1. If G is clique irreducible then G^c is either connected or has exactly two non trivial components and if G is clique vertex irreducible then G^c is either connected or has exactly one non-trivial component.

Lemma 6.4.3. The clique vertex reducible graphs and the clique reducible graphs are closed for the operations of union and join.

Theorem 6.4.4. A cograph G is clique vertex irreducible if and only if it can be reduced to a trivial graph by recursively deleting universal vertices in each of the components.
Chapter 6 : Clique irreducible and weakly clique irreducible graphs

Proof. The proof is by induction on $|V| = n$. For $n = 1$ the theorem is trivially true. Assume that the theorem is true for any cograph with less than n vertices. A disconnected graph is clique vertex irreducible if and only if each of its components is clique vertex irreducible. Therefore, we may assume that, G is a connected cograph with n vertices. Then $G = G_1 \vee G_2$. If both G_is are not complete, then G^c will have at least two non trivial components which by Lemma 6.4.2 is a contradiction. Therefore, let G_1 be complete. Every vertex of G_1 is a universal vertex of G. Deleting these vertices we get a cograph G_2 with less than n vertices.

Any clique C of G_2 corresponds to a clique $G_1 \vee C$ of G and hence has a vertex which does not lie in any other clique of G_2. Therefore, G_2 is a clique irreducible cograph with less than n vertices and hence by the induction hypothesis G_2 can be reduced to trivial graph by deleting universal vertices. Hence, the theorem.

Theorem 6.4.5. A connected cograph G is clique irreducible if and only if $G = G_1 \vee G_2 \vee K_p$ where G_1 and G_2 are clique vertex irreducible cographs such that G_i^c is connected for $i = 1, 2$ and $p \geq 0$.

Proof. Let $G = G_1 \vee G_2 \vee K_p$ where G_1 and G_2 are connected clique vertex irreducible cographs and $p \geq 0$. Any clique of G is of the form $H = H_1 \vee H_2 \vee K_p$, where H_1 and H_2 are cliques of G_1 and G_2 respectively. Since, G_1 and G_2 are clique vertex irreducible, there exist vertices $v_1 \in H_1$ and $v_2 \in H_2$ such that they do not lie in any other clique of G. Therefore, the edge v_1v_2 of H does not lie in any other clique of G and hence G is clique irreducible.

Conversely, assume that G is clique irreducible. Since G is a cograph G^c must be disconnected. Therefore by Lemma 6.4.1, G^c has exactly two non trivial components. So, $G = G_1 \vee G_2 \vee K_p$, where G_i^c and G_j^c are both connected. Let H_{11} and H_{12} be any two cliques of G_1 and H_{21} and H_{22} be any two cliques of G_2.
$H = H_{11} \lor H_{21} \lor K_p$ is a clique of G. Every edge in H_{11}, every edge which joins H_{11} to a vertex of K_p and every edge in K_p will be present in the clique $H_{11} \lor H_{22} \lor K_p$. Again, every edge in H_{21}, every edge which joins H_{21} to a vertex of K_p and every edge in K_p will be present in the clique $H_{12} \lor H_{21} \lor K_p$. But, H has an edge which does not lie in any other clique of G. Therefore, that edge must be an edge which joins a vertex of H_{11} to a vertex of H_{21}. Let that edge be u_1u_2. But, then u_1 and u_2 cannot be present in any other clique of G_1 and G_2 respectively. Therefore, G_1 and G_2 are clique vertex irreducible.

Theorem 6.4.6. The weakly clique irreducible cographs can be recursively characterized as follows.

1. K_1 is a weakly clique irreducible cograph.
2. If G_1 and G_2 are weakly clique irreducible cographs, then so is their union $G_1 \cup G_2$.
3. If G_1 is a weakly clique irreducible cograph, then so is $G_1 \lor K_p$.
4. If G_1 and G_2 are non-complete weakly clique irreducible cographs, then $G_1 \lor G_2$ is a weakly clique irreducible cograph if and only if every edge in G_i belongs to at least one vertex essential clique, for $i = 1, 2$.

Proof. The graph K_1 is weakly clique irreducible and union of any two weakly clique irreducible graphs is weakly clique irreducible. The cliques of $G_1 \lor K_p$ are of the form $H_1 \lor K_p$, where H_1 is a clique in G_1. If H_1 is essential in G_1 then so is $H_1 \lor K_p$ in $G_1 \lor K_p$. If H_1 is an isolated vertex u, then again $H_1 \lor K_p$ is an essential clique in $G_1 \lor K_p$ with all edges with one end vertex u as essential edges. Therefore, $G_1 \lor K_p$ is weakly clique irreducible if G_1 is weakly clique irreducible.
Chapter 6: Clique irreducible and weakly clique irreducible graphs

Let G_1 and G_2 be non-complete weakly clique irreducible cographs such that every edge in G_i belongs to at least one vertex essential clique, for $i = 1, 2$. If H_i is a vertex essential clique in G_i where $v_i \in V(H_i)$ is the vertex which does not belong to any other clique in G_i for $i = 1, 2$ then $H_1 \lor H_2$ is an essential clique in $G_1 \lor G_2$ where v_1v_2 is an essential edge. Therefore, every edge in $E(G_i)$ belongs to an essential clique in $G_1 \lor G_2$, since every edge in G_i belongs to at least one vertex essential clique, for $i = 1, 2$. Let $u \in V(G_1)$ and $v \in V(G_2)$. Consider the edge $uv \in E(G_1 \lor G_2)$.

Case 1: u and v are isolated vertices in G_1 and G_2 respectively.

In this case, uv is a clique and is essential.

Case 2: u is an isolated vertex in G_1, but v is not an isolated vertex in G_2.

Let $v' \in N(v)$. There exist a vertex essential clique C in G_2 which contains the edge vv'. Let w be the essential vertex in C. Therefore, uw is an essential edge in the clique $\{u\} \lor C$. Hence the edge uv belongs to the essential clique $\{u\} \lor C$ in $G_1 \lor G_2$.

The case where, u is not an isolated vertex in G_1, but v is an isolated vertex in G_2 can be proved similarly.

Case 3: u and v are not isolated vertices in G_1 and G_2 respectively.

Let $u' \in N(u)$ and $v' \in N(v)$. Let H_1 and H_2 be the vertex essential cliques in G_1 and G_2 respectively, which contains the edges uu' and vv' respectively. Let w_i be the essential vertex in H_i for $i = 1, 2$. Therefore, w_1w_2 is an essential edge in the clique $H_1 \lor H_2$. Hence the edge uv belongs to the essential clique $H_1 \lor H_2$ in $G_1 \lor G_2$.
Therefore, every edge in $G_1 \vee G_2$ belongs to an essential clique and hence it is weakly clique irreducible.

Conversely, assume that G is a weakly clique irreducible cograph. If G is disconnected then it is the union of weakly clique irreducible cographs. If G has universal vertices then it is the join of a weakly clique irreducible graph with K_p, where p is the number of universal vertices.

Therefore, let G be a connected cograph without universal vertices. Hence, $G = G_1 \vee G_2$ where both G_1 and G_2 are not complete. None of the edges in $E(G_1) \cup E(G_2)$ are essential, since both G_1 and G_2 contains more than one clique. Therefore an essential edge in $G_1 \vee G_2$, if it exist, must be of the form uv, where $u \in V(G_1)$ and $v \in V(G_2)$. Then, u and v are essential vertices of G_1 and G_2 respectively. Hence, for $i = 1, 2$, the edges of G_i can be covered by essential cliques if and only if every edge in G_i belongs to at least one vertex essential clique. Therefore, if G_1 and G_2 are non-complete weakly clique irreducible cographs, then $G_1 \vee G_2$ is a weakly clique irreducible cograph if and only if every edge in G_i belongs to at least one vertex essential clique, for $i = 1, 2$.

Hence, the theorem. □

\section{Distance hereditary graphs}

In this section the distance hereditary graphs which are clique irreducible, clique vertex irreducible and weakly clique irreducible are characterized.

\textbf{Lemma 6.5.1.} The clique vertex reducible (clique reducible) graphs are closed.
Chapter 6: Clique irreducible and weakly clique irreducible graphs

under the operations of attaching a pendant vertex, a true twin and a false twin.

Proof. Let G be a clique vertex reducible (clique reducible) graph and C be a clique in G, all of whose vertices (edges) are present in some other clique in G.

The cliques of the graph obtained by attaching a pendant vertex u to a vertex v of G are the cliques of G together with the clique uv. Therefore C is a clique in this new graph and all of its vertices (edges) are present in some other clique.

The cliques of the graph obtained by attaching a true twin u to the vertex v of G are the cliques of G which does not contain the vertex v and the cliques of G which contains v together with the vertex u. If $v \notin C$, then C is a clique in the new graph and all its vertices (edges) are present in some other clique. If $v \in C$, then all the vertices (edges) in C other than u (the edges with one end vertex u) are already present in some other clique. Since v is (the edges with one end vertex v are) present in some other clique, u (the edges with one end vertex u) also must be present in some other clique.

The cliques of the graph obtained by attaching a false twin u to the vertex v of G are the cliques of G and the cliques of the form $(S \cup \{u\}) - \{v\}$, where S is a clique in G which contains the vertex v. Therefore, C is a clique in this new graph and all of its vertices (edges) are present in some other clique.

Theorem 6.5.2. The clique vertex irreducible distance hereditary graphs can be recursively characterized as follows.

(1) K_1 is a clique vertex irreducible distance hereditary graph.

(2) If G is a clique vertex irreducible distance hereditary graph, then so is the graph obtained by attaching a pendant vertex to a vertex $v \in V(G)$, where v satisfies either $N(v)$ is not complete or there exists $w \in N(v)$ such that $N(w) = N(v)$.

\Box
Chapter 6: Clique irreducible and weakly clique irreducible graphs

(3) If G is a clique vertex irreducible distance hereditary graph, then so is the graph obtained by attaching a true twin.

(4) If G is a clique vertex irreducible distance hereditary graph, then so is the graph obtained by attaching a false twin to a vertex $v \in V(G)$, where v satisfies $\langle N(v) \rangle$ is complete.

Proof. The graph K_1 is clique vertex irreducible. Let G be a clique vertex irreducible graph. Let G' be a graph obtained by attaching a pendant vertex u to a vertex v where v satisfies the conditions in theorem. The cliques of G' are precisely, the cliques of G and the edge uv. The clique uv contains the vertex u which does not belong to any other clique of G'. Every clique of G' which does not contain v also has a vertex which does not lie in any other clique of G', since G is clique vertex irreducible. Let C be a clique of G which contains the vertex v. If $N(v)$ is not complete then C contains a vertex $v' \neq v$ which is not present in any other clique of G and hence of G'. If $N(v)$ is complete, then C contains a vertex which does not belong to any other clique of G' if and only if there exist a vertex $w \in V(C)$ which does not belong to any other clique of G. i.e; if and only if $N(w) = N(v)$.

Let G be a clique vertex irreducible graph. Let G' be the graph obtained by attaching a true twin u to a vertex v of G. The cliques of G' are precisely, the cliques of G which does not contain v and the cliques of G which contains v together with the vertex u. Each such clique contains a vertex which does not lie in any other clique of G', since G is clique vertex irreducible and hence G' is also clique vertex irreducible.

Let G' be the graph obtained by attaching a false twin u to a vertex v of G. The cliques of G' are the cliques of G together with the cliques of the form
Chapter 6: Clique irreducible and weakly clique irreducible graphs

(C \cup \{u\}) - \{v\} \text{ where } C \text{ is a clique of } G \text{ which contains } v. \text{ The cliques of } G' \text{ which does not contain } v \text{ will continue to have a vertex which does not lie in any other clique. Let } C \text{ be a clique of } G \text{ which contains the vertex } v. \text{ Every vertex of the clique } C \text{ other than } v \text{ will be present in the clique } (C \cup \{u\}) - \{v\} \text{ also. Therefore, } C \text{ contains a vertex which does not lie in any other clique of } G' \text{ if and only if } v \text{ does not belong to any other clique of } G, \text{ which happens if and only if } <\mathcal{N}(v)> \text{ is complete.}

Also, any distance hereditary graph } G \text{ can be obtained from } K_1 \text{ by the operations of attaching pendant vertices, introducing true twins and introducing false twins (Lemma 1.1.3) and by Lemma 6.5.1, the theorem follows.

\begin{theorem}
The weakly clique irreducible distance hereditary graphs can be recursively characterized as follows.

1. } K_2 \text{ is a clique irreducible distance hereditary graph.}

2. If } G \text{ is a clique irreducible distance hereditary graph then so is the graph obtained by attaching a pendant vertex.}

3. If } G \text{ is a clique irreducible distance hereditary graph then so is the graph obtained by attaching a true twin.}

4. If } G \text{ is a clique irreducible distance hereditary graph then so is the graph obtained by attaching a false twin to a vertex } V \text{ if } <\mathcal{N}(v)> \text{ is clique vertex irreducible.}

\end{theorem}

\textbf{Proof.} The graph } K_2 \text{ is clique irreducible. Let } G \text{ be a clique irreducible graph. Let } G' \text{ be the graph obtained by attaching a pendant vertex } u \text{ to a vertex } v \text{ of } G. \text{ The cliques of } G' \text{ are precisely, the cliques of } G \text{ and the edge } uv. \text{ Every clique}
contains an edge which does not lie in any other clique of \(G' \) and hence \(G' \) is clique irreducible.

Let \(G \) be a clique irreducible graph. Let \(G' \) be the graph obtained by attaching a true twin \(u \) to a vertex \(v \) of \(G \). The cliques of \(G' \) are precisely, the cliques of \(G \) which does not contain \(v \) and the cliques of \(G \) which contains \(v \) together with the vertex \(u \). Every such clique contains an edge which does not lie in any other clique, since \(G \) is clique irreducible and hence \(G' \) is also clique irreducible.

Let \(G' \) be the graph obtained by attaching a false twin \(u \) to a vertex \(v \) of \(G \). The cliques of \(G' \) are the cliques of \(G \) together with the cliques of the form \((C \cup \{u\}) - \{v\} \) where \(C \) is a clique of \(G \) which contains \(v \). The cliques of \(G' \) which does not contain \(v \) will continue to have an edge which does not lie in any other clique. Let \(C \) be a clique of \(G \) which contains the vertex \(v \). Every edge of \(C \) which does not contain \(v \) will be present in the clique \((C \cup \{u\}) - \{v\} \) also. Therefore, \(C \) contains an edge which does not lie in any other clique of \(G' \) if and only if there exists an edge \(vv' \) which does not lie in any other clique of \(G \). Therefore, the vertex \(v' \) is not present in any clique of \(N(v) \) other than \(C - \{v\} \). So, \(N(v) \) is clique vertex irreducible.

The converse follows by Lemma 1.1.3 and by Lemma 6.5.1. \(\square \)

Lemma 6.5.4. The class of weakly clique reducible graphs is closed under the operations of attaching pendant vertices, true twins and false twins.

Proof. Let \(G \) be a weakly clique reducible graph and let \(e \) be the edge which is not covered by any of the essential cliques in \(G \).

Let \(G' \) be the graph obtained from \(G \) by attaching a pendant vertex. The essen-
tial cliques of G' are the essential cliques of G together with the newly introduced edge. But, these essential cliques will not cover the edge e.

Let G' be the graph obtained from G by attaching a true twin v to a vertex u. The essential cliques of G' are the essential cliques of G which does not contain the vertex u and the cliques of the form $C \cup \{v\}$, where C is an essential clique in G which contains the vertex u. Still, the edge e is not covered by essential cliques.

Let G' be the graph obtained from G by attaching a false twin v to a vertex u. The essential cliques of G' are the essential cliques of G which does not contain the vertex u, the cliques of the form $(C - \{u\}) \cup \{v\}$ and C, where C is an essential clique in G which contains the vertex u and which has an essential edge with one end vertex u. Again, the edge e is not covered by the essential cliques.

Hence the lemma. \(\square\)

Theorem 6.5.5. A distance hereditary graph G is weakly clique irreducible if and only if all its induced subgraphs are weakly clique irreducible.

Theorem 6.5.6. A distance hereditary graph G is weakly clique irreducible if and only if G does not contain F_{19} in Fig. 1.9 as an induced subgraph.

Proof. By Theorem 6.5.5, G is weakly clique irreducible if and only if all its induced subgraphs are weakly clique irreducible. But, a graph G is hereditary weakly clique irreducible if and only if G does not contain any of the graphs in Fig. 1.9 as an induced subgraph (Lemma 1.1.11). But, G cannot have any of the graphs F_1, F_2, \ldots, F_{18} as an induced subgraph, since they contain gem as an induced subgraph (Lemma 1.1.4). Hence, the theorem. \(\square\)

Corollary 6.5.7. A cograph G is weakly maximal clique irreducible if and only if
Chapter 6 : Clique irreducible and weakly clique irreducible graphs

G does not contain F_{19} in 1.1.9 as an induced subgraph.

Proof. Since, cographs are a subclass of distance hereditary graphs (Lemma 1.1.5) and F_{19} in Fig : 1.9 is a cograph, the corollary follows. \qed

Theorem 6.5.8. The weakly clique irreducible distance hereditary graphs can be recursively characterized as follows.

1. K_2 is a weakly clique irreducible distance hereditary graph.

2. If G is a weakly clique irreducible distance hereditary graph then so is the graph obtained by attaching pendent vertices to the vertices of G.

3. If G is a weakly clique irreducible distance hereditary graph then so is the graph obtained by attaching true twins to the vertices of G.

4. If G is weakly clique irreducible distance hereditary graph then so is the graph obtained by attaching false twins to a vertex u where $N(u)$ is C_4-free is also weakly clique irreducible.

Proof. The graph K_2 is weakly clique irreducible. Let G be a weakly clique irreducible distance hereditary graph. If G does not have F_{19} as an induced subgraph then a graph obtained by any of the above operations also cannot have F_{19} as an induced subgraph. Therefore, they are all weakly clique irreducible.

Conversely, by the recursive definition of distance hereditary graphs (Lemma 1.1.3), it is enough if we could prove that, attaching a false twin v to a vertex u which contains a $C_4 = u_1, u_2, u_3, u_4$ in $N(u)$, gives a weakly clique reducible graph. Clearly, u, v, u_1, u_2, u_3, u_4 is F_{19}.

Hence the theorem. \qed
List of some open problems

1. Characterize non-isomorphic graphs of the same order having isomorphic
 Gallai graphs (anti-Gallai graphs).

2. Characterize graphs G for which the Gallai and the anti-Gallai operators
 commute.

3. Characterize graphs G for which $\Gamma(G) = \Delta(G)$.

4. Characterize all connected graphs which satisfy $\gamma(G) = \gamma_{cd}(G)$.

5. Characterize all connected graphs which satisfy $\gamma_{cd}(G) = \gamma_{gcd}(G)$.

6. Identify the domination parameters which satisfy Vizing's type relation under
 any of the graph products.

7. Characterize the clique perfect graphs [73].

8. Identify special classes of clique perfect graphs.

9. Estimate sharp upper bounds for the clique transversal number for special
 classes of graphs and characterize the graphs which attains this upper bound.

10. Does there exist graph classes which satisfy the $< t >$-property for every t?

11. Characterize the clique irreducible graphs, the clique vertex irreducible graphs
 and the weakly clique irreducible graphs.