LIST OF TABLES

Chapter 1

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>Composition of ordinary Portland cement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.2</td>
<td>Portland cement types</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>ASTM C 150 Portland Cement Mortar Compressive Strength Specifications in MPa (psi)</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Blended cement types and blended ratios.</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Tensile properties of polymers</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Thermal characteristics of polymers</td>
</tr>
<tr>
<td>Table 1.7</td>
<td>Thermoplastic polymers with a C-C backbone chain</td>
</tr>
<tr>
<td>Table 1.8</td>
<td>Typical properties of polymer-containing concrete composites and Portland cement concrete</td>
</tr>
<tr>
<td>Table 1.9</td>
<td>European Consumption of Polymers in Construction</td>
</tr>
</tbody>
</table>

Chapter 2

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Proportions of the components for cement composites of latex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.2</td>
<td>Formulations of cement composites of rubbers</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Proportions of components for cement composites of water-soluble thermoplastics (PVAL and PEG)</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Proportions of components for cement composites of thermoplastic emulsions (PVAC, PA and PAS)</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Mix design of thermoplastics modified cement paste</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Formulations of PVAL cement composites</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Bulk density after 7,14,21,28 days of hydration before and after immersion in</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Density values in kg/m³ before and after the hydration and the % increase in the density</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Degree of retention of compressive strength of cement composites of rubbers</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Degree of percentage retention of compressive strength of cement composites of thermoplastics</td>
</tr>
</tbody>
</table>
Chapter 3

Table 3.1 Reaction mixture for preparation of RF resin
Table 3.2 Reaction mixture for the synthesis of CF resin
Table 3.3 Amounts of chemicals taken for the synthesis of PF resin
Table 3.4 Mix design of RF cement composites (W/C = 0.25)
Table 3.5 Mix proportions for RFSC composite.
Table 3.6 Mix proportions for CFC composite (W/C = 0.28)
Table 3.7 Components of the m-cresol formaldehyde sand cement composite
Table 3.8 Mix proportions of phenol formaldehyde resin cement composites (W/C = 0.30)
Table 3.9 Preparation of MF resin cement composite
Table 3.10 Bulk density measurements of the cement composites of thermosetting resins
Table 3.11 Dynamic Young’s modulus of elasticity values of composites
Table 3.12 Degree of retention of compressive strength of phenolic resins on exposure to 1% HNO₃
Table 3.13 Degree of retention of compressive strength of composites on exposure to 1% NaOH
Table 3.14 Degree of retention of compressive strength of composites on exposure to Kerosene

Chapter 4

Table 4.1 Weight loss at various thermal transitions for cement composites of polymers
Table 4.2 Percentage of hot water soluble extractables in polymer cement composites
LIST OF FIGURES

Chapter 1:

Fig. 1.1 Flow chart for the manufacture of Portland cement
Fig. 1.2 Typical composition of concrete
Fig. 1.3 Schematic Representation of Polymer Molecules
Fig. 1.4 Tensile stress-strain curves for four types of polymeric material
Fig. 1.5 Thermal behaviour of polymers
Fig. 1.6 General formula of thermoplastic polymers having a C-C backbone chain
Fig. 1.7 Structure of PMMA
Fig. 1.8 Structure of polyamide molecule
Fig. 1.9 Structure of NR molecule
Fig. 1.10 Structure of butadiene repeating unit
Fig. 1.11 Structure of EPM rubber
Fig. 1.12 Structure of Silicone rubber
Fig. 1.13 Repeating unit of epoxy resins.
Fig. 1.14 Repeating unit of unsaturated polyester resins.
Fig. 1.15 Repeating unit of phenolic resins (a) resols (b) novolacs
Fig. 1.16 Repeating unit of UF resins
Fig. 1.17 Repeating unit of MF resins
Fig. 1.18 Repeating unit of alkyd resins
Fig. 1.19 Steps involved in Polymer modified concrete
Fig. 1.20 Schematic illustration of reaction between polymer with carboxylic group, ordinary
 Portland cement and aggregate
Fig. 1.21 Schematic illustration of an interaction between a cement and chemical admixture
Fig. 1.22 Alkaline hydrolysis of the acrylic polymers

Chapter 2:

Fig. 2.1 (a) and (b) show the mould and the vibration mixer used
Fig. 2.2 Reaction between borax and polyvinyl alcohol
Fig. 2.3 Percentage increase in density Vs no. of days of hydration
Fig. 2.4 % Mass retention after exposure to chemical environments
Fig. 2.5 Compressive strength of cement composites of various thermoplastics for different
 P/C percentages
Chapter 3

Fig. 3.1 Chemical structures of different substances reacting with formaldehyde
Fig. 3.2 Formation of RF resin
Fig. 3.3 Experimental setup for the synthesis of m-cresol formaldehyde and phenol formaldehyde resins
Fig. 3.4 Synthesis of CF resin
Fig. 3.5 Preparation of PF resin
Fig. 3.6 (a) Mould used to make polymer cement composites
Fig. 3.6 (b) Vibrator used for the compaction of the specimens
Fig. 3.7 Percentage mass retention of cement composites of thermosetting resins after exposure to acid, base and kerosene
Fig. 3.8 Variation of compressive strength of cement composites of PF resins of different ratios. (*0% is virgin cement taken as reference)
Fig. 3.9 Compressive strength of RFC and CFC composites
Fig. 3.10 Compressive strength of cement composites of thermosetting polymers (*0% is virgin cement taken as reference)
Fig. 3.11 Variation of compressive strength for 1:1.75 ratio of resorcinol formaldehyde and m-cresol formaldehyde resins cement composites with various proportions of sand
Fig. 3.12 Acid resistance of cement composites of (a) phenolic resins (b) thermosetting resins
Fig. 3.13 Alkali resistance of cement composites of (a) thermosetting resins (b) phenolic resins
Fig. 3.14 Kerosene resistance of (a) thermostets (b) phenolic resins
Fig. 3.15 Percentage retention of 1:1 cement and sand composites of CF resin

Chapter 4

Fig. 4.1 Soxhlet apparatus
Fig. 4.2 Structure of EDTA ion
Fig. 4.3 TGA curve for virgin cement concrete
Fig. 4.4-4.16 TGA curves of various polymer cement composites
Fig. 4.17. Reaction between borax and polyvinyl alcohol
Fig. 4.18. Reaction between polyvinyl alcohol and formaldehyde
Fig. 4.19. SEM of cement
Fig. 4.20-4.48 SEM of unetched and etched samples of various polymer cement composites
Fig. 4.49. Structures of PVAL and PVAC
Fig. 4.50. Structures of SBR and NBR
Fig. 4.51. Structures of phenolic resins