CONTENTS

Declaration by research guide .. i
Declaration by research scholar ... ii
Acknowledgements .. iii
Contents ... v
List of Figures ... ix
List of Tables .. xii
List of Abbreviations .. xv
Motivation ... xvii
Abstract .. xviii

1. Introduction

1.1. Fermentation ... 1
1.2. SSF: A unique fermentation process 2
1.3. Types of solid state fermenter 3
 1.3.1 Group - I ... 5
 1.3.2 Group - II .. 5
 1.3.3 Group - III ... 6
 1.3.4 Group – IV .. 6
1.4. Innovation in SSFr ... 7
1.5. Enzyme production by SSF ... 9
 1.5.1 Cellulase ... 10
1.6. Substrate for SSF ... 14
1.7. SSF for research: A critical approach 18
1.8. Objectives of the research ... 20

2. Literature review of SSF design (packed bed) 29

2.1. Introduction to SSF design ... 29
2.2. Pros and cons of SSF .. 30
2.3. SSF process methodology ... 31
2.4. Common theoretical design of packed bed
 2.4.1 PBSSF
 2.4.2 Pressure gradients in PBSSF
 2.4.3 Basic design for head of the PBSSF
 2.4.4 Conical packed bed solid state fermentation system
2.5 Applications of PBSSF

3. Screening, optimization of cellulase producing organism on different substrates
 3.1. Introduction
 3.2. Materials and methods
 3.2.1 Selection of substrate for cellulase production
 3.2.2 Substrate pretreatment
 3.2.3 Isolation of cellulase producer
 3.2.4 Determination of glucose / inulin resistance of isolates
 3.2.5 Cellulase production on modified inulin
 3.2.6 Morphological characterization, 18 rRNA gene sequencing and phylogenetic analysis of the isolated cellulase producing fungus
 3.2.7 Selection of efficient substrate
 3.2.8 Cellulase activity and yield
 3.2.9 Selection of optimum conditions parameter for SSF
 3.2.10 Determination of nitrogen in substrate by Kjeldahl’s method
 3.2.11 Determination of protein
 3.2.12 Determination of organic carbon
 3.2.13 Screen analysis of substrate to determine its average particle size
 3.2.14 Determination of chemical composition of substrate
 3.2.15 Enzyme production in SSF upon fortification
 3.2.16 Cellulase activity determination by native gel electrophoresis
3.3. Results and Discussion

3.3.1 Selection of substrate for cellulase production 59
3.3.2 Substrate pretreatment 60
3.3.3 Isolation of cellulase producer 61
3.3.4 Determination of sugar tolerance resistance of isolates 62
3.3.5 Morphology and identification 63
3.3.6 Substrate pretreatment effect on cellulase production 67
3.3.7 Optimization of temperature and pH 68
3.3.8 Screen analysis and effect of particle size on cellulase production 69
3.3.9 Enzyme production in SSF upon nutrient fortification 71
3.3.10 Cellulase production for optimized parameters 73
3.3.11 Confirmation of cellulase production 76

3.4. Conclusions 78

4. Studies on packed bed solid state fermenter (PBSSF) 82

4.1. Introduction 83
4.2. Materials and methods 85

4.2.1 Inoculum preparation 85
4.2.2 Pretreatment of raw material 85
4.2.3 Characterization of substrate 85

4.2.3.1 Water holding capacity (WHC) of the substrate 85
4.2.3.2 Temperature and initial pH measurement 87
4.2.3.3 Water activity (a_w) 88
4.2.3.4 Determination of calorific values and lignin content 89

4.2.4 Inert packing material with substrate 89
4.2.5 Experimental set-up 90
4.3 Results and discussion
4.3.1 Characterization of substrate
4.3.2 FT-IR spectra for JS
4.3.3 Axial temperature gradients formed in PBSSF
4.3.4 Water holding capacity
4.3.5 Inert packing material with substrate
4.3.6 Calorific values and lignin contents in substrate
4.4 Conclusions

5. Modeling and simulation of temperature gradients in PBSSF
5.1. Introduction
5.2. Materials and method
 5.2.1 Experimental set-up
 5.2.2 Pretreatment of raw material
 5.2.3 Inoculum preparation
 5.2.4 Material properties
 5.2.5 Initial biomass formed
5.3. Mathematical model
 5.3.1 Kinetic model
 5.3.2 Heat capacity of air (Cpa)
 5.3.3 Specific growth rate constant
 5.3.4 Dynamic heat transfer model
5.4. Results and discussion
5.5. Conclusions

Summary
Future Prospects
Appendix I
Appendix II
Curriculum vitae