LIST OF FIGURES

1.1 Gamma ray interaction in energy of nuclear domain.
1.2 Relative importance of three major gamma ray interactions.
1.3 Summary of gamma ray interactions.
1.4 Ray path through a cavity in an otherwise homogeneous medium to illustrate calculation of contrast in transmission imaging.
1.5 Schematic illustration of point-by-point arrangement for scatter imaging.
2.1 Experimental arrangement for recording pulse-height distribution from mono-energetic sources for construction of response matrix.
2.2 Observed pulse-height distributions from mono-energetic sources, the areas normalized to crystal (intrinsic) efficiency.
2.3 The transformation to \( V/V_c \) scale, cross-cuts of constant \( V/V_c \) are indicated.
2.4 Interpolated bin content counts as function of incident energy at different values of \( (E')^{1/2} \).
2.5 Experimentally observed pulse-height distribution, \( P(E') \), curve-a obtained after subtracting background events (unrelated to sample) and resulting calculated histogram(curve-b) of \( S(E) \) converting pulse-height distribution to a true photon spectrum.
3.1 System utilizing Compton scattering technique for inspecting volume of interest.
3.2 (a) Decay scheme of \(^{137}\)Cs radioactive source (b) Decay scheme of \(^{241}\)Am radioactive source.
3.3 Experimental set-up with \(^{137}\)Cs for tomographic measurements.
3.4 Experimental set-up with \(^{241}\)Am as a radioactive source.
3.5 Experimental set-up showing detector in transmission and scattering geometry.
3.6 Block diagram of electronic assembly.
3.7 (a) Observed full energy peaks and calibration curve of NaI(Tl) detector (b) Energy resolution of NaI(Tl) detector.
3.8 (a) Observed full energy peaks and calibration curve of HPGe detector (b) Energy resolution of HPGe detector.
3.9 Photo-peak efficiency curve for 51 mm x 51 mm NaI(Tl) detector.
3.10 Photo-peak efficiency curve for HPGe detector.
3.11 Backscattering geometry.
3.12 Transmission geometry.

4.1 The photograph of two metal samples used for tomographic inspection.

4.2 Experimentally observed pulse-height distribution, P(E'), curve-a obtained after subtracting background events and resulting calculated histogram (curve-b) of S(E) converting pulse-height distribution to a true photon spectrum, obtained by response matrix with bin mesh (E)^{1/2} of 0.025 (MeV)^{1/2}.

4.3 Concrete block, specifying various dimensions, used for the tomographic inspection.

4.4 Experimentally observed pulse-height distribution, P(E'), curve-a obtained after subtracting background events (unrelated to sample), and resulting calculated histogram (curve-b) of S(E) converting pulse-height distribution to a true photon spectrum.

4.5 Experimentally observed pulse-height distribution, P(E'), curve-a obtained after subtracting background events (unrelated to sample), and resulting calculated histogram (curve-b) of S(E) converting pulse-height distribution to a true photon spectrum.

4.6 Experimentally observed pulse-height distribution, P(E'), curve-a obtained after subtracting background events (unrelated to sample), and resulting calculated histogram (curve-b) of S(E) converting pulse-height distribution to a true photon spectrum.

4.7 Samples of cylindrical pipe inspected in the present work.

4.8 Experimentally observed pulse-height distribution, P(E'), curve-a obtained after subtracting background events, and resulting calculated histogram (curve-b) of S(E) converting pulse-height distribution to a true photon spectrum, obtained by response matrix with bin mesh (E)^{1/2} of 0.05 (MeV)^{1/2}.

4.9 Landmine phantom used for the experiment.

4.10 Experimentally observed pulse-height distribution, P(E'), curve-a obtained after subtracting background events (unrelated to sample), and resulting calculated histogram (curve-b) of S(E) converting pulse-height distribution to a true photon spectrum.

4.11 An observed scattered spectrum (curve-a) with aluminium pipe of opening 6 mm, background spectrum (curve-b) and curve-c is the resulting spectrum corrected for events unrelated to sample.

4.12 Transmitted intensity profile as a function of position showing defect/inclusion in aluminium block.

4.13 Transmitted intensity profile as a function of position showing multiple defect/fault positions in iron block.

4.14 Transmitted intensity profile as a function of position showing defect/ inclusion in concrete block.

4.15 Grey scale images of aluminium block: (a) – empty void and (b) - iron filled void.
4.16 Grey scale images of iron block having multiple voids.

4.17 Grey scale images of concrete block: (a) - empty voids and (b) - iron filled voids.

4.18 Scattered intensity profile as a function of position showing defect/inclusion in aluminium block. Experimental variation of scattered intensity for aluminium block with empty void, void filled with aluminium and iron are shown by curves (a), (b) and (c) respectively. The measured uncertainty in data lies within the dimensions of data points shown by different symbols.

4.19 Experimental variations of scattered intensity, as a function of position, for iron block with different thicknesses are shown by curves (a), (b), (c), (d) and (e) respectively. The measured uncertainty in data lies within the dimensions of data points shown by different symbols.

4.20 Experimental variation of scattered intensity, as a function of position, for concrete block with empty void and void filled with iron are shown by curves (a) and (b) respectively. The measured uncertainty in data lies within the dimensions of data points shown by different symbols.

4.21 Grey scale images of aluminium block: (a) – empty void, (b) – aluminium inclusion and (c) – iron inclusion.

4.22 Grey scale image, of iron block (thickness 16 mm) having multiple collinear voids, for intensity values: (a) – uncorrected and (b) – response corrected.

4.23 Grey scale image of concrete block: (a) - empty void and (b) - iron filled void.

4.24 Experimental variation of scattered intensity, as a function of position, for aluminium block with empty void, void filled with aluminium and iron are shown by curves (a), (b) and (c) respectively. The solid and dotted curves correspond to data with and without correction of response function respectively. The measured uncertainty in data lies within the dimensions of data points shown by different symbols.

4.25 A comparison of (scattered intensity profile for iron block) response corrected (shown by solid curves) and without correction (shown by dotted curves) tomographic measurements.

4.26 Experimental variation of scattered intensity (response corrected) as a function of pipe wall thickness for different surrounding media. The measured uncertainty in data lies within the dimensions of data points shown by different symbols.

4.27 Experimental variation of scattered intensity (response corrected) for raw and absorption corrected data as a function of pipe wall thickness. The measured uncertainty in data lies within the dimensions of data points shown by different symbols.

4.28 Experimental variation of scattered intensity (response corrected) as a function of liquid density.

4.29 Scattered intensity profile as a function of position showing discrimination for pipeline in soil from that of soil only.

4.30 Scattered intensity profile as a function of position showing defect/fault position.
4.31 Scattered intensity profile as a function of position showing range for blockage region.

4.32 Scattered intensity profile as a function of position showing range of explosive material.

4.33 Experimental variation of scattered intensity (response corrected) as a function of liquid density. The measured uncertainty in data lies within the dimensions of data points shown by different symbols.

4.34 Experimental variation of transmitted intensity as function of pipe wall thickness (a) and liquid density (b).

4.35 Experimental variation of scattered intensity as function of pipe wall thickness (a) and liquid density (b).

5.1 (a) A typical observed spectra at scattering angle of 130° for a phantom (K$_2$HPO$_4$ concentration 30 gm in 100 ml) when irradiated by 59.54 keV incident photons for 5 ks duration. (b) Zoom in spectra of region of coherent peak.

5.2 (a) A typical observed spectra with HPGe detector for a lung phantom (density 1039.77 Kg/m$^3$) when irradiated by 59.54 keV incident photons (b) Zoom in spectra of region of Rayleigh peak and (c) A typical observed spectra with NaI(Tl) for lung phantom (density 1022.7 Kg/m$^3$) when irradiated by 662 keV gamma rays.

5.3 Experimental variation of Rayleigh to Compton scattered intensity as function of concentration of K$_2$HPO$_4$ solution. Measured uncertainty in data lies within the dimensions of data points shown filled circles.

5.4 Experimental variation of Rayleigh to Compton intensity as function of lung phantom density (bottom x-axis) and effective atomic number (top x-axis). The top x-axis’s scale is not a linear one.

5.5 Experimental variation of Compton scattered intensity (observed by HPGe and NaI(Tl) detector) as function of density within lung phantom. Measured uncertainty for 59.54 keV and 662 keV gamma photons data lies within the dimensions of data points shown by filled and unfilled circles respectively.

5.6 Experimental variation of wing ratio as function of density within phantom. Measured uncertainty in data lies within the dimensions of data points shown unfilled circles (for 662 keV).

5.7 Experimental variation of Compton counts and FWHM of Compton spectra with thickness of Perspex sheets (simulating chest wall thickness) for 59.54 keV incident gamma photons.