CHAPTER 3

6LoWPAN

3.1 INTRODUCTION

This chapter gives an overview about the 6LoWPAN architecture which covers the basics of 6LoWPAN, its design issues and its characteristics. It also presents a comparison between Zigbee and 6LoWPAN.

Wireless Sensor Networks (WSN) adopts IEEE 802.15.4 standard which specifies the characteristic of a wireless link for low-power personal area networks. The capabilities of IEEE 802.15.4 are limited compared to Wireless Personal Area Network (WPAN). As the Wireless Personal Area Networks is predominantly a battery-operated device, it possesses certain constraints such as low bandwidth, low transmit power and low data rate (Kushalnagar et al., 2007). Further, due to its limited memory capacity, enabling IP to these networks becomes a challenging task.

With the advent of the Internet of Things (IoT) and ubiquitous computing, the need has emerged to design protocols which connect the WSN to Internet. Ubiquitous computing, where computers interact with each other to make decisions on behalf of the user, needs to be IP enabled. Since Internet is the most widespread network, connecting WSNs to the Internet, allows dissemination of sensed data ubiquitously (Adnan et al., 2012). Further, it also facilitates WSNs to capitalize the existing Internet infrastructure and IP-applications for cohesive connectivity with sensor networks. Currently, two main approaches, namely, the proxy-based and the sensor stack-based are used to connect WSNs to IP networks. In the proxy-based approach, the sink node serves as the gateway between the sensor node and Internet. In the stack-based approach, the IP protocol is implemented in each node to allow data exchange inside the sensor network. It also enables connectivity with other IP based networks.
In order to gain the benefits of Internet and to confront the limitations of WSN, the protocols developed for Integration of WSN over Internet need to be light weight. The Internet Engineering Task Force (IETF) 6LoWPAN working group plays a significant role in making the use of IPv6 over the standard IEEE 802.15.4 possible. 6LoWPAN (Jonathan Hui et al., 2009) is an upcoming technology that allows connectivity among nodes with limited power by importing IPv6 capabilities into the low-power nodes. 6LoWPAN adopts the physical (PHY) and Media Access Control (MAC) layer protocols defined in IEEE 802.15.4 standard as its lower layer protocols. The IPv6 protocol is used as the network layer protocol in 6LoWPAN. Since the IPv6 network layer's Maximum Transmission Unit (MTU) is not compatible with the MAC layer of IEEE 802.15.4, an adaptation layer is introduced between the network and MAC layers. It performs fragmentation, reassembling, IPv6 header compression, and addressing mechanism to enable compatibility.

Therefore the development of 6LoWPAN provides IP communication capability to nodes in WSN, thereby enabling connectivity with other IP based networks (Jonathan Hui et al., 2010). This eliminates the use of gateways in the network and hence reduces the delay involved in data forwarding. It is found to be more suitable for real time monitoring applications such as smart metering, health monitoring, tracking etc.,

Wireless Embedded Internet includes highly constrained resource limited embedded nodes. These embedded nodes are often battery operated, connected by low-power, low bandwidth wireless networks to the Internet. The development of 6LoWPAN enables wireless embedded nodes to participate in the Internet of Things (IoT) (Zach Shelby et al., 2009).
3.2 6LoWPAN ARCHITECTURE

6LoWPAN standards enable the efficient use of IPv6 over low power, low rate wireless networks on simple embedded nodes through an adaptation layer and optimisation of related protocols. The Maximum frame size of LOWPAN packet is 128 octets as specified by IEEE 802.15.4 while the frame size of IPv6 is 1280 octets. Thus an incompatibility exists in accommodating the IPv6 frame in a LOWPAN frame. In order to alleviate this issue, 6LoWPAN working group has suggested an additional adaptation layer between MAC layer and the network layer as illustrated in Figure 3.1 (Zach Shelby et al., 2009).

The formulation of 6LoWPAN is graphically dealt with in the working drafts namely RFC 4944 (Montenegro et al., 2007) and RFC 4919 (Kushalnagar et al., 2007) released by IETF working group. The problems related to routing over 6LoWPAN are well detailed in IETF draft RFC 6606 (Kim et al., 2012).

The Physical (PHY) layer provides the basic communication capabilities of the medium. It is based on IEEE 802.15.4 standard and its features are listed in Table 3.1 from which it can be observed that the header of the TCP/IP is larger than that of the WSN (Zach Shelby et al., 2009).

<table>
<thead>
<tr>
<th>Application Layer</th>
<th>TCP/UDP</th>
<th>IP/ICMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 (or) Network Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptation Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE 802.15.4 MAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE 802.15.4 PHY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.1 Protocol Stack of 6LoWPAN Architecture
To enable the efficient transmission of payload, header compression is mandatory. Also fragmentation and reassembling of packets and layer-two forwarding is required. Thus, the adaptation layer introduced between the MAC and Network layer provides the above mentioned functionalities.

Table 3.1. Comparison between IPv6 and WSN

<table>
<thead>
<tr>
<th>Features</th>
<th>WSN</th>
<th>IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td>250 Kbps</td>
<td>250 Kbps</td>
</tr>
<tr>
<td>Addressing Space</td>
<td>32 bits</td>
<td>128 bits</td>
</tr>
<tr>
<td>Channel Access Method</td>
<td>CSMA/CA</td>
<td>CSMA/CA</td>
</tr>
<tr>
<td>Physical PDU</td>
<td>127 bytes</td>
<td>1280 bytes</td>
</tr>
<tr>
<td>Beacon Enabled</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Header Compression</td>
<td>Not Required</td>
<td>Required (Large payload)</td>
</tr>
<tr>
<td>Gateways</td>
<td>Required</td>
<td>Not Required</td>
</tr>
</tbody>
</table>

6LoWPAN PHY layer provides two services namely the PHY data service and PHY management service. Both the service interfaces with Physical Layer Management Entity (PLME) Service Access Point (SAP) known as the PLME-SAP (Zach Shelby et al., 2009). The key function of PHY data services is to provide transmission and reception of data packets between MAC and PHY through the physical radio channel. The PHY management service interface, offers access to every layer management function and maintains a database of information on related personal area networks. It is based on IEEE 802.15.4 standard which operates at the frequency of 2400 – 2483.5MHz offering a data rate of 250 kbps. The protocol data unit is IEEE 802.15.4 compliant with a maximum payload of 127 bytes. The packet data structure of physical layer is presented in Figure 3.2. The PHY data structure is divided into PHY header field and the PHY payload field. It consists of Synchronisation Header (SHR), PHY Header (PHR) and Physical Service Data Unit (PSDU). The Synchronisation header encompasses various fields: Preamble Sequence, Start of Frame Delimiter, and a Frame length field. The Physical header is the reserved field indexed with one bit. The SHR condones the receiver to achieve
symbol synchronization. As a result, the SHR, PHR, and PHY payload form PHY packet.

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Start of Frame Delimiter</th>
<th>Frame length 7 bits</th>
<th>Reserved 1 bit</th>
<th>PHY Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronisation Header (SHR)</td>
<td>PHY Header (PHR)</td>
<td>PHY Service Data Unit (PSDU)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figure 3.2 IEEE 802.15.4 PHY Packet Structure](image)

The Data Link layer provides services to enable reliable, single-hop communication links between 6LoWPAN nodes. The MAC Protocol Data Unit (PDU) is IEEE 802.15.4 compliant which operates in non beacon-enabled mode. In non-beacon-enabled networks, data frames (including those carrying IPv6 packets) are transmitted via the contention-based channel access method such as un-slotted CSMA/CA.

The adaptation layer is the main component of 6LoWPAN. The major function of this layer is the TCP/IP header compression. The IEEE 802.15.4 frame has a maximum packet size of 128 bytes, whereas IPv6 header size is 40 bytes, User Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP) header sizes are both 4 bytes, fragmentation header adds another 5 bytes overhead. However, without compression, it is not possible to transmit any payload effectively. A second major function of the adaptation layer is to handle packet fragmentation and reassembling. IEEE 802.15.4 has a maximum frame size of 128 bytes, while IPv6 requires a maximum transmission unit (MTU) of 1280 bytes. This mismatch is handled in the adaptation layer. The next major function of the adaptation layer is routing (Zach Shelby et al., 2009).
The 6LoWPAN network layer provides the internetworking capability to sensor nodes. The main considerations of this layer are addressing, mapping and routing protocols. It addresses IPv6 requirement and provides appropriate security services. It also supports routing and network management with SNMP (Simple Network Management Protocol). In 6LoWPAN, being based on the process of packet forwarding, the routing is classified into two schemes such as mesh-under and route-over. The decision of routing occurs in 6LoWPAN adaptation layer. On the other hand, in Route-over, the decision is executed in 6LoWPAN network layer. In route-over scheme, each link layer hop is an IP hop and each node acts as IP router. The packet is forwarded hop by hop from source to destination between these links. The payload packet is encapsulated with IP header. Later, IP packet is fragmented and is sent to the next hop node based on routing table information. When the adaptation layer in the next hop receives all the fragments successfully, it creates an IP packet from fragments and forwards it to the network layer. Further, the network layer sends the packet to the upper layer (transport layer), conditional to the desired destination being reached. Otherwise, it forwards the packet to the next hop node according to the routing table information. Whenever fragment loss is encountered, all fragments are retransmitted to one hop distance (Jonathan Hui et al., 2009).

Similar to the transport layer in OSI model, 6LoWPAN transport layer is responsible for process-to-process delivery. It delivers data segment to the appropriate application process on the sensor node. In this layer, there are two types of transport protocols namely User Datagram Protocol (UDP) and Transmission Control Protocol (TCP). At the source side, either TCP or UDP connections is established based on the application. Hence, either TCP or UDP processes is created. The data from application layer is organized in either UDP or TCP segment and attached to created process (Zach Shelby et al., 2009). On the destination side, after the UDP or TCP segments is received from the network layer, the transport layer processes the segment, based on the protocol used and sends it up to the application layer. However, in order to enhance the use of limited resource of
6LoWPAN, UDP protocol is commonly used. In aspect of performance, efficiency and complexity, TCP is not preferably used with 6LoWPAN.

The 6LoWPAN application layer uses a socket interface for a specific application as shown in the Figure 3.3. Each 6LoWPAN application opens a socket to receive or send packets. Each socket is associated with a protocol such as TCP or UDP, and Ports namely source and destination ports (Nurul halimatul Asmak Ismail et al., 2012).

<table>
<thead>
<tr>
<th>Application N</th>
<th>Socket API</th>
<th>Transport Layer</th>
</tr>
</thead>
</table>

Figure 3.3 6LoWPAN Applications using a Socket Interface

Basically, 6LoWPAN is a collection of IP-enabled sensor nodes which are assigned IPv6 addresses by an Edge Router (ER). For a mobile sensor, these IPv6 addresses are valid as long as they are within the range of ER. The association and disassociation of nodes are similar to that of WLAN (Wireless Local Area Network). The architecture of 6LoWPAN is illustrated in Figure 3.4, which consists of three types of 6LoWPAN such as simple LoWPAN, Extended LoWPAN and Ad hoc LoWPAN. In Simple LoWPAN, nodes are connected to the Internet via a Edge Router (ER) (Zach Shelby et al., 2009). To address the network scalability multiple ERs can be used resulting in an Extended LoWPAN. An Ad hoc LoWPAN operates without an infrastructure and is connected to the Internet. In this topology, a router is randomly configured to act as a simplified ER. This ER does the unique local Unicast Address Generation (ULA) and also handles 6LoWPAN Neighbour Discovery registration functionality. The ER placed at the edge of the 6LoWPAN routes traffic in and out of the 6LoWPAN and handles neighbour discovery and header compression task.
This thesis focuses on the Simple LoWPAN. The nodes in 6LoWPAN plays the role of host or router, along with one or more edge routers. The network interfaces of the nodes in a LoWPAN share the same IPv6 prefix which is distributed by the ER and routers throughout the LoWPAN. In order to facilitate efficient network operation, nodes initially make a registration with an edge router. These operations are part of Neighbour Discovery (ND). ND defines interaction of hosts with routers. Nodes are free to move throughout the LoWPAN, between edge routers, and even between LoWPANs maintaining a multi-hop mesh topology. In traditional WSN, the lower layers (PHY&MAC) are standardized by IEEE 802.15.4, while the upper layers are by zigbee standard (Zach Shelby et al., 2009).

Figure 3.4 Architecture of 6LoWPAN
3.3 FEATURES OF 6LoWPAN

3.3.1 IEEE 802.15.4

IEEE 802.15.4 is a standard for low-power, low data rate wireless communication between small nodes. It forms the basis for Low Rate, Wireless Personal Area Networks (LR-PANs). It supports a much broader range of applications. Also it provides cheap, low power, short-range communications for embedded nodes. It addresses the lower layer such as MAC and PHY layer function activities. The four types of frame formats specified by Zigbee standard are Beacon Frame, MAC Command Frame, Data Frame and ACK Frame (Montenegro et al., 2007). Data frames are used to transport the actual data, which are IPv6 frames packaged according to 6LoWPAN format specifications. Acknowledgment frames are used by the receiver after the successful reception of the data frame. MAC layer command frames are used to enable various MAC layer services such as association and disassociation from a co-ordinator and also for the management of synchronised transmission. The upper layer functionalities are handled by Zigbee standard which is developed by Zigbee Alliance Consortium (Zach Shelby et al., 2009).

Wireless Sensor Networks can be either beacon enabled or non-beacon enabled. In beacon-enabled networks, the PAN (Personal Area Network) coordinator sends a beacon frame to synchronize and delineate Super frames. Here access to the channel is slotted and Super frames contain Guaranteed Time Slots (GTS), each of which are assigned to a specific node, preventing media access contention. Beacon-enabled networks are energy efficient as the nodes that do not have a slot can be switched to 'sleep' mode from 'listen' mode (Montenegro et al., 2007). In non-beacon enabled networks, no beacon frames are transmitted by the coordinator. Hence all nodes would be in 'listening' mode keeping their radios ON. IEEE 802.15.4 supports both the 64-bit extended address or 16-bit unique address within the PAN (Montenegro et al., 2007).
3.3.2 6LoWPAN Network Topologies

6LoWPAN supports both star and mesh topology (Zach Shelby et al., 2009). However most of the 6LoWPAN applications such as automatic meter reading and environmental monitoring have been developed using mesh topologies. As it is often coverage extended and cost-effective with respect to infrastructure, it adopts multi-hop forwarding to achieve energy efficiency. This can be done in three different ways such as link-layer mesh, LoWPAN mesh or IP routing. Link layer mesh and LoWPAN mesh are referred to as Mesh-under as the mesh forwarding is transparent to the Internet Protocol. IP routing is referred to as route-over.

The most common routing employed in 6LoWPAN is IP routing. An algorithm present in the router updates the routing table based on which next hop node is selected. The Internet protocol just forwards the packets. The IETF MANET WG (Working Group) for generic ad hoc networks has developed IP routing algorithms for mesh networking. While IETF ROLL WG has developed, specific routing algorithm for wireless embedded applications such as industrial and building automation.

3.3.3 6LoWPAN Addressing and Auto Configuration

6LoWPAN supports Stateless Address Auto configuration (SAA) mechanism which reduces the configuration overhead on the nodes. The auto configuration process includes generation of link local address and global address. Further, it also performs Duplicate Address Detection (DAD) procedure to verify the unique nature of the addresses on a link.

The stateless method is used, when the consideration for the exact addresses that the nodes use are taken in a random manner. While Dynamic Host Configuration Protocol for IPv6 (DHCPv6) (Droms et al., 2003) is used when there is a strong consideration for exact address assignments. Both methods can be used simultaneously.
To test the unique nature of the address on a given link, nodes run Duplicate Address Detection (DAD) algorithm on addresses before assigning them to an interface. This DAD algorithm is performed on all addresses even if they are obtained through DHCPv6 or stateless auto configuration. This auto configuration process is applied only to nodes and not to routers. The advantage of stateless address auto configuration includes the reduction of manual configuration of individual nodes.

3.3.4 The Need for Adaptation Layer

The 6LoWPAN WG has defined the IPv6 communication among 802.15.4 frames with the help of the adaptation layer. Three main functions of the adaptation layer are header compression, fragmentation and layer-2 forwarding. The 6LoWPAN adaptation layer uses stateless compression which compresses the overlapping values of adaptation, network and transport layer header fields to a few bytes.

Figure 3.5 6LoWPAN Header Stack
In IEEE 802.15.4, MAC header, Mesh addressing header and IPv6 compressed header are all considered as IP addresses. Typical 6LoWPAN header stack is shown in the Figure 3.5 (Jonathan Hui et al., 2009). It is found that no fragmentation happens when the payload is IEEE 802.15.4 compatible. However, when it exceeds, fragmentation happens and then fragmentation header is introduced. In case of multihop routing to avoid medium contention, mesh addressing header is introduced in the stack.

3.3.4.1 Fragment Header

In order to accommodate, payload of a large size in a single IEEE 802.15.4 frame, fragmentation header is used. It consist of three fields namely Datagram Size, Datagram Tag and Datagram Offset as illustrated in Figure 3.6 (Montenegro et al., 2007).

Datagram size specifies the total size of the payload. It is included in every fragment to simplify the buffer allocation at the receiver for proper payload reassembly. Datagram tag identifies the set of fragments corresponding to a given payload and it is used to map fragments of the same payload. Datagram offset identifies the number of fragments that are offset within the un-fragmented payload.

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>0</th>
<th>Rsv</th>
<th>Datagram size</th>
<th>Datagram tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datagram offset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.6 Fragment Header

3.3.4.2 Mesh addressing Header

To forward 6LoWPAN payloads over multiple radio hops and to support layer-two forwarding, mesh addressing header is used. Figure 3.7 displays the frame format of mesh addressing header. It includes three fields namely hop limit, source address and destination address. The hop limit field limits the number of hops for forwarding and is decremented by each forwarding. The frame is dropped when this
field is decremented up to zero. The end points of an IP hop is indicated by the source and the destination address. Both source and destination addresses may be either short address or extended address.

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>S</th>
<th>D</th>
<th>Hops limit</th>
<th>Source address</th>
<th>Destination address</th>
</tr>
</thead>
</table>

Figure 3.7 Mesh Addressing Header

The payload length of the reassembled original packet is computed using the expression given in equation (3.1) (Hinden and Deering, 2006).

$$PL_{org} = PL_{first} - FL_{first} - 8 + (8 * FO_{Last}) + FL_{Last}$$ \((3.1) \)

Where

- PL_{org} = Payload length field of the reassembled packet
- PL_{first} = Payload length field of the first fragment packet.
- FL_{first} = Length of the fragment following first fragment header of first fragment packet.
- FO_{Last} = Fragment offset field of fragment header of last fragment packet.
- FL_{Last} = Length of fragment following fragment header of last fragment packet.

3.4 ADDRESSING IN 6LoWPAN

The link layer address is not a routable address and it cannot predict the nodes present in the network. In 6LoWPAN, data frames carry both the source and the destination addresses (Montenegro *et al.*, 2007). This destination address is used by a receiver to decide whether the frame is actually intended for this receiver or not. The source address plays a vital role in mesh forwarding. 6LoWPAN nodes are
permanently identified by Extended Unique Identifier (EUI)-64 identifier. Also it defines a 16-bit short address format which is dynamically assigned during the bootstrapping of the network. 6LoWPAN requires that both the source and destination addresses be included in the frame header. Thus IPv6 addresses are compressed in 6LoWPAN.

3.5 NEIGHBOUR DISCOVERY (ND)

6LoWPAN Neighbour Discovery (ND) describes network auto configuration and operations of hosts, routers and edge routers in LoWPANs. ND is used to bootstrap the whole LoWPAN. Bootstrapping is the process of assigning IPv6 addresses to nodes that are within radio range to enable basic communication. In order to reduce the cost involved in multicast flooding, a registry of the nodes in each LoWPAN is maintained in the white board database of the Edge Router (ER).

Using Neighbour Discovery (ND) protocol each node present in the LoWPAN discovers its neighbours as shown in the Figure 3.8. It also determines its link-layer addresses, to find routers. ND helps to maintain reachability information about the paths to neighbours that the node is actively communicating with others. ND can be combined with other protocols such as DHCPv6 to obtain additional node configuration information (Droms et al., 2003).

The ND protocol classifies the nodes into two category namely hosts and routers. Host nodes are basically the source node, while router nodes are the intermediate node that forward data to the destination. Edge router is considered to be the destination node that interfaces with Internet to formulate 6LoWPAN. The Edge router compared to other routers performs complex functions such as maintaining the whiteboard database about the nodes and routers inside the LoWPAN. Thus centralized administration is maintained by the Edge router (ER) (Zach Shelby et al., 2009).
3.6 **CHALLENGES IN 6LoWPAN**

The advances in 6LoWPAN, while promising, have also posed challenges in the area of IP connectivity, network topologies, limited packet size, limited configuration and management, service and security discovery. These challenges and tradeoffs are discussed as follows: (Kushalnagar *et al.*, 2007).

3.6.1 IP Connectivity

The need for IP connectivity within a LoWPAN is realised by connecting the sensor nodes to other IP-based networks or to embedded devices. As nodes in the 6LoWPAN network increase, the necessity for network auto configuration and statelessness is highly required which can be achieved through IPv6 as it offers 2^{128} bits of address.
With the limited packet size of LoWPAN, the IPv6 address format allows inclusion of IEEE 802.15.4 addresses if desired. Simple interconnectivity to other IP networks including the Internet is done by IPv6. However given the limited packet size, headers for IPv6 and layers above must be compressed whenever it is required based on the application (Zach Shelby, 2009).

3.6.2 Limited Packet Size

Applications developed using 6LoWPANs should support only small packets as devised by IEEE 802.15.4. Hence routing protocols need to be designed in a manner as specified by the IEEE 802.15.4 frame. Whenever the packet size exceeds 127 bytes, it may pose challenges for low end 6LoWPAN nodes, as they do not have enough RAM or storage to accommodate 1280 sized packet.

3.6.3 Limited Configuration and Management

Nodes within the LoWPAN can be deployed in large numbers. Also these LoWPAN devices possess limited input and display capabilities. Also the location of some of these devices are hard to access. However, protocols used in LoWPANs should have minimal configuration, be easy to bootstrap, and enable the network to self heal given the inherent unreliable characteristic of these nodes. The size constraints of the link layer protocol should also be considered. Network management should have little overhead, yet be powerful enough to control dense deployment of nodes in the network (Kushalnagar et al., 2007).

3.6.4 Service Discovery and Security consideration

6LoWPANs require service discovery network protocol to discover, control and maintain services provided by nodes. New protocols must be designed to enable such features in the nodes.
6LoWPANs applications require confidentiality and integrity protection, which is provided by all the layers above the PHY layer. Some of the prevailing constraints that will affect the choice of a particular protocol includes its small code size, low power operation, low complexity and small bandwidth requirements.

3.6.5 Localization

The purpose of localization is the provision of some kind of location information to the nodes in the network. Using the location knowledge of nodes, the place of occurrence of the phenomenon can be easily determined. Further, it also helps in developing energy efficient routing algorithms.

This research work considers location information along with the IP address to reduce the overhead of the transmission. Several restrictions of 6LoWPAN networks include its limited energy supply, computing power and bandwidth of the wireless links. 6LoWPAN networks poses certain challenges such as the failure of node due to lack of power, physical damage or environmental interference leading to rerouting or re-organisation of the network.

3.7 ZIGBEE

6LoWPANs are formed by nodes that are compatible with the IEEE 802.15.4 standard. However, Zigbee uses the IEEE 802.15.4 standard as its communication protocol for Medium Access Control (MAC) layer and Physical (PHY) layer. IEEE 802.15.4 nodes are characterized by low computational power, scarce memory capacity, low bit rate, short range, and low cost (Vinay Kumar and Sudharshan Tiwari, 2012).

3.7.1 Zigbee

Zigbee technology is characterized by low data rate, low power consumption, and low cost. The networking protocol is mainly targeted towards automation and remote control applications. Zigbee is initiated and maintained by the Zigbee Alliance, which is responsible for the Zigbee technology standardisation.
The IEEE 802.15.4 task group and Zigbee Alliance worked together and developed the technology commercially known as Zigbee (Zigbee Alliance, 2008).

Zigbee supports three types of nodes called Zigbee Co-ordinator (ZC), Zigbee Router (ZR) and Zigbee End Device (ZED). The Zigbee Co-ordinator maintains and co-ordinates the entire network with overall network knowledge. The Zigbee Router (ZR) works as a router in the network to forward data. The Zigbee End Device (ZED) has limited functionalities such as sensing and reporting data to the ZR.

The main goal of the Zigbee technology is to enable WSNs composed of large number of nodes to function with reduced energy consumption. Various sensor nodes like Mica Motes, TelosB uses Zigbee to achieve higher life time for their applications (Zigbee Alliance, 2005).

3.7.2 Zigbee Architecture

The Zigbee stack architecture is shown in the Figure 3.9. Zigbee stack does not exactly match within the OSI (Open System Interconnection) seven layer networking model, but it has some of the same elements including the PHY, MAC and Network layers. Layers 4 through 7 (transport, session, presentation and application) are wrapped in the Application Support Layer (APS) and Zigbee Device Object (ZDO) layers in the Zigbee model (Zigbee Alliance).

The PHY and MAC layers are defined by the IEEE 802.15.4 standard specification. The PHY layer simply translates packets over the air. The PHY layer can operate at two frequencies 868/915 MHz and 2.4 GHz with 16 channels and 250 Kbps of maximum transmission rate as given in Table 3.2.

The MAC layer provides commands for association and disassociation, acknowledged frame delivery, channel access mechanism, frame validation, guaranteed time slot management and beacon management. The application and network layers are defined by the Zigbee Alliance (2005), while PHY and MAC layers are defined by the IEEE 802.15.4 standard (Jonathan Hui et al., 2009).
Network layer does mesh networking by broadcasting packets across the network, determining routes for unicasting packets and for ensuring reliability.

Zigbee networks are all secured at the network layer and the entire payload of the network frame is encrypted. The Application Support Layer (APS) acts as a filter for the applications running above it and on the end points to simplify the logic in those applications. The ZDO layer is responsible for local and over the air management of the network. It provides services to discover other nodes in the network and is responsible for the current state of the network.

The Application framework contains the Zigbee cluster library and provides a framework to run the application. Endpoints mechanism distinguish one application from another. Between the layers, there are Service Access Points (SAP), which provide an Application Program Interface (API) that isolates the inner workings of that layer from the layer above and below. Zigbee uses two SAP approach per layer, one for data and one for management. All the data communications to and from the network layer go through the Network Layer Data Entity Service Access Point (NLDE-SAP).

<table>
<thead>
<tr>
<th>ZIGBEE DEVICE OBJECT (ZDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLICATION SUPPORT LAYER (APS)</td>
</tr>
<tr>
<td>NETWORK LAYER</td>
</tr>
<tr>
<td>MAC LAYER</td>
</tr>
<tr>
<td>PHYSICAL LAYER</td>
</tr>
</tbody>
</table>

Figure 3.9 The Zigbee Stack Architecture

Zigbee technology differs from other wireless technologies due to its data transmission rate, low energy consumption, lower cost, higher self organisation and more flexible network topologies.
3.7.3 Zigbee Network Topology

Three kinds of network topologies are supported by Zigbee technology. They are Star, peer-to-peer and Cluster tree as shown in Figure 3.10. In the star topology, communication is established between the devices and a single node controller, called the PAN coordinator. The PAN coordinator is mains powered, while the other nodes are battery powered. The Star topology is the simplest topology and is based on a many-to-one communication paradigm. Here all the nodes are covered by the PAN co-ordinator antenna and are able to send the messages in one hop.

In contrast to star topology, any device can communicate with any other device in peer-peer topology so long as they are within range of one another. A peer-to-peer network can be ad hoc, self-organising and self-healing (Zigbee Alliance, 2005).

Cluster-tree topology is a special case of peer-to-peer network, in which most of the devices are Full Function Device (FFD) and a Reduced Function Device (RFD) may connect to a cluster tree network as a leaf node at the end of a branch. The advantage of the clustered structure is increased coverage at the cost of increased message latency (Mohamed Matin, 2012).

![Figure 3.10 Network Topologies of Zigbee](image)
Peer-to-Peer and Cluster tree topologies rely on a routing protocol in order to deliver the messages to the PAN co-ordinator. Peer-to-peer topology does not allow cluster heads and nodes to communicate with each other. Cluster tree topology is based on the organisation of nodes into clusters. Star topology is considered the simplest because simple routing solutions can be developed.

3.8 FEATURES OF ZIGBEE

3.8.1 Reliability

Radio waves can be interrupted by many factors such as metal, concrete or dependent on the antenna design, power amplification and even weather condition. In case of wireless environment, the propagation medium should be dynamic and uncertain imposing limitation on coverage area. Therefore small changes in the position or direction of the signal may result in the drastic differences of the signal strength or the quality of the link (Zigbee Alliance, 2008). To adhere to this challenge, Zigbee technology takes counter measures to provide reliability. It relays on the data only on the reliable path that are IEEE 802.15.4 complaint. Before transmitting, nodes listen to the channel, unless the channel is idle, it begins to transmit. This prevents collision within the channel, reducing data loss. Also Zigbee uses a 16-bit Cyclic Redundancy Check (CRC) on each packet, called a Frame Checksum (FCS) to ensure that the data bits are correct. Here each packet is retried up to three trials.

![Figure 3.11. Zigbee Mesh](image)

Figure 3.11. Zigbee Mesh
Figure 3.11 shows routing in mesh topology. The source nodes forward data using node 2 and 3 as intermediate. Due to the limitation mentioned early, retransmissions are permitted thrice, beyond which packet should be rerouted through alternate path as shown in Figure 3.12. Thus mesh topology ensures reliable transmission.

Zigbee radios with the proper power management consumes less power and lasts for a long time. Nodes in a Zigbee network can operate for years on a pair of AA batteries. The cause for low power consumption in Zigbee is due to its low duty cycle. Examples, consider a temperature sensor reporting periodically for 1 hour. A light switch toggle 6 or 10 times per day. Experiments prove that the Zigbee device can achieve a lifetime of five years on a pair of AA batteries (Zigbee Alliance, 2008).

Figure 3.12. Zigbee Mesh Re Routing

3.8.2 Security

Zigbee uses the Advanced Encryption Standard (AES). AES-128, is a block cipher that encrypts and decrypts packets in a manner which is difficult to crack. AES-128 is an internationally recognised and trusted standard which is implementable on an 8-bit processor.
3.8.3 **Low Data Rate**

Zigbee resides on transceivers, which operate at 2.4 GHz offering a data rate of 250 Kbps.

3.9 **ZIGBEE Vs 6LoWPAN**

6LoWPANs are formed by devices that are compatible with the IEEE 802.15.4 standard. Zigbee is a network layer protocol whose PHY and MAC layer is based on the IEEE 802.15.4 standard to achieve the goal of low-power and low-energy consumption as given in Table 3.2 (Zigbee Alliance, 2005). IEEE 802.15.4 devices are characterized by low computational power, scarce memory capacity, low bit rate, short range and low cost. Zigbee provides license-free operations, huge spectrum allocation and worldwide compatibility. Zigbee is more suitable for WSN, mainly because of its low power consumption derived from its multi-hop communication.

The power consumption in a sensor network is of primary importance and it should be extremely low. The Zigbee protocol places primary importance on power management. It has been developed to allow low power consumption and years of battery life. Zigbee is limited to a single radio standard whereas 6LoWPAN is applicable to any low-power, low-rate wireless radio or even wired. IP protocols tie together heterogeneous networks. Zigbee is based on small scale isolated ad hoc networking. LoWPAN has devices that work together to connect the physical working environment to real world applications like sensors with wireless application. Some protocols exist in sensor networks that have a non-IP network layer protocol such as Zigbee, where the TCP/IP protocol is not used. However 6LoWPAN provides a WSN node with IP communication capabilities by putting an adaptation layer above the IEEE 802.15.4 for the packet fragmentation and reassembly purpose.
6LoWPAN is massively scalable, networking as an end-to-end part of the Internet, its IPv6. IPv6 is designed for large scale enterprise automation, M2M, metering system etc., which require end-to-end addressing, security, mobility, traffic multiplexing, reusability, maintainability and web services which are globally scalable.

Many standard and proprietary protocols like Zigbee, MiWi mesh and MiWi P2P, Wireless Hart and ISA 100.11a use the MAC and PHY (circuits) in association with IEEE 802.15.4 radios. They use their own arrangements of bits and bytes to transfer information between nodes, but none of them use the IP. So they cannot directly communicate with Internet based devices and web servers/browsers.

To accommodate the IPv6 MTU size of 1280 bytes into 802.15.4 frame of 127 bytes stateless compression is done, which gives nodes the flexibility to communicate with any neighbour in compressed form at all times.

Stateless compression gives a network multiple entry and exit points, whereas a stateful network is susceptible to single point failures. As a result of stateless compression, the 6LoWPAN community has software stacks with a minimal memory requirement compared to a Zigbee stack. The beauty of 6LoWPAN communication is that they let people communicate with nodes across the Internet without Zigbee gateway. 6LoWPAN communications do not require a complete modifications in the IEEE 802.15.4 radio stack, instead it adds an adaptation layer at the top of the MAC layer for effective data delivery among the nodes.
<table>
<thead>
<tr>
<th>Feature</th>
<th>6LoWPAN</th>
<th>Zigbee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications</td>
<td>PHY & MAC based on IEEE 802.15.4</td>
<td>PHY & MAC based on IEEE 802.15.4</td>
</tr>
<tr>
<td>Scalability</td>
<td>Supports 2^{128} IP addresses</td>
<td>Supports 2^{32} IP addresses</td>
</tr>
<tr>
<td>Address Assignment</td>
<td>Random Address Assignment</td>
<td>Assignment based on either stateful or stateless methods.</td>
</tr>
<tr>
<td>Topologies</td>
<td>Supports Tree, Mesh</td>
<td>Supports Mesh, Cluster, Star</td>
</tr>
<tr>
<td>IPv6 compatible</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Automated Channel change</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Frequency bands</td>
<td>2450 MHz (250 kbps), 915 MHz (40 kbps) and 868MHz (20 kbps).</td>
<td>2450 MHz (250 kbps), 915 MHz (40 kbps) and 868MHz (20 kbps).</td>
</tr>
<tr>
<td>Maximum number of nodes</td>
<td>More than 64000</td>
<td>More than 64000 nodes per network</td>
</tr>
<tr>
<td>Network Security</td>
<td>AES-128 possible</td>
<td>AES-128 possible</td>
</tr>
<tr>
<td>Field of applications</td>
<td>WPANs with IP connectivity</td>
<td>Smart energy and home automation applications</td>
</tr>
<tr>
<td>Internet compatibility</td>
<td>Devices directly communicate with the Internet.</td>
<td>Cannot directly communicate with the Internet.</td>
</tr>
<tr>
<td>Compression</td>
<td>Reduction of protocol overhead by header compression and fragmentation</td>
<td>No header compression or fragmentation mechanism applied</td>
</tr>
<tr>
<td>Routing protocols</td>
<td>RPL</td>
<td>Tree routing and AODV</td>
</tr>
</tbody>
</table>
3.10 NEED FOR ROUTING IN 6LoWPAN

Routing can be referred to as a technique by which information is transferred from one place to another. 6LoWPAN architecture enables the transmission of IPv6 over WSNs based on the IEEE 802.15.4 standard. Various requirements of this technology support sleep/listen mode, low overhead on data packets and minimal computation and energy requirements. Packets have to traverse multiple radio hops on their way through the 6LoWPAN. This involves two processes namely routing and forwarding. 6LoWPAN supports routing in both layer 2 and layer 3. If it happens in layer2, it is called mesh-under. In layer3, it is called route-over (Aminul Haque et al., 2009).

Routing is challenging for 6LoWPAN, with low-power and lossy radio links, battery powered nodes, multi-hop mesh topologies and frequent topological changes due to mobility. Two kinds of routing can be performed with 6LoWPAN, Intra -LoWPAN routing between LoWPAN routers, and border routing performed at the edge of the LoWPAN by the LoWPAN edge router or an IPv6 router on the backbone link for Extended LoWPANs (Zach Shelby and Carsten Bormann, 2009).

IP networks are packet switched and so forwarding decisions are made hop-by-hop, based on the destination address in a packet. IP addresses are structured, so as to be used to group together addresses under a single route entry. In IPv6 an address prefix is used for this purpose, so it is called prefix based routing. However this work focuses on routing in 6LoWPAN which is dealt with in detail in next section.

This chapter has given an insight about 6LoWPAN basics and its architecture. In the next section, the detailed information about the 6LoWPAN routing protocols are presented.