CHAPTER IV

COMMON FIXED POINT THEOREMS ON MULTIFUNCTIONS
CHAPTER IV

COMMON FIXED POINT THEOREMS ON MULTIFUNCTIONS

4.1. Dealing with a complete metric space, Pachpatte established the following theorems in [3] and [7] respectively.

Theorem A. Let S and T be mappings of a complete metric space (X, d) itself satisfying the inequality

$$
(4.1.1) \quad d(sx, ty) \leq c \max \left\{ \frac{[d(x, sx)]^2 + [d(y, ty)]^2}{d(x, sx) + d(y, ty)} \right\},
$$

$$
\frac{1}{2} \frac{[d(x, ty)]^2 + [d(y, sx)]^2}{d(x, sx) + d(y, ty)}
$$

for all x, y in X for which $d(x, sx) + d(y, ty) \neq 0$, where $0 < c < 1$. Then S and T have a common fixed point. Further, if $d(x, sx) + d(y, ty) = 0$ implies $d(sx, ty) = 0$, the fixed point is unique.

Theorem B. Let S and T be mappings of a complete metric space (X, d) into itself such that

$$
(4.1.2) \quad \{d(sx, ty)\}^2 \leq c \max \left\{ [d(x, sx) d(y, ty) + d(x, ty) d(y, sx)] \right\},
$$

$$
\frac{1}{2} [d(x, ty) d(y, ty) + d(x, sx) d(y, sx)]
$$
for all \(x, y \) in \(X \) where \(0 < c < 1 \). Then \(S \) and \(T \) have a unique
common fixed point.

In the present section, we give similar common
fixed point theorems for two multifunctions \(T_1 \) and \(T_2 \) which
generalize Theorem A and B. Before the statement of our
theorems we mention some lemmas which will be required in
the sequel.

Lemma 1. Let \((X, d)\) be a metric space and \(T_1, T_2 : (X, d) \rightarrow CB(X) \)
be two multifunctions. If

\[
H^m(T_1, T_2) \leq c \max \left\{ \frac{d^p(x, T_1 x) + d^p(y, T_2 y)}{d^{p-m}(x, T_1 x) + d^{p-m}(y, T_2 y)}, \right. \\
\left. \frac{1}{2^{p-1}} \frac{d^p(x, T_2 y) + d^p(y, T_1 x)}{d^{p-m}(x, T_1 x) + d^{p-m}(y, T_2 y)} \right\}
\]

holds for all \(x, y \) in \(X \) for which \(d^{p-m}(x, T_1 x) + d^{p-m}(y, T_2 y) \neq 0 \),
where \(0 < c < 1, m \geq 1, p \geq 2, m < p \) and \(F(T_1) \neq \emptyset \), then
\(F(T_2) \neq \emptyset \) and \(F(T_1) = F(T_2) \).

Proof. Let \(u \in F(T_1) \), then \(u \in T_1 u \) and if \(d(u, T_2 u) \neq 0 \),
then applying (4.1.3), we have

\[
d^m(u, T_2 u) \leq H^m(T_1 u, T_2 u) \leq c \max \left\{ \frac{d^p(u, T_1 u) + d^p(u, T_2 u)}{d^{p-m}(u, T_1 u) + d^{p-m}(u, T_2 u)} \right\}
\]
\[
\frac{1}{2^{P-1}} \frac{d_P(u_0 T_2 u) + d_P(u_0 T_1 u)}{d_P^m(u_0 T_1 u) + d_P^m(u_0 T_2 u)} \}
\]

\[
\frac{c d_P(u_0 T_2 u)}{d_P^m(u_0 T_1 u) + d_P^m(u_0 T_2 u)} \]

which implies \(d(u_0 T_2 u) = 0\). Since \(T_2 u\) is closed, this shows that \(u \in T_2 u\), which implies \(F(T_2) \subset F(T_1)\). Analogously \(F(T_2) \subset F(T_1)\).

Lemma 2. Let \((X, d)\) be a metric space and \(T_1, T_2 : (X, d) \to CB(X)\) be two multifunctions. If

\[
(4.1.4) \ \{H(T_1 x, T_2 y)\}^2 \leq c \max \left\{ [d(x, T_1 x) d(y, T_2 y) + d(x, T_2 y) d(y, T_1 x)] \right\}
\]

holds for all \(x, y\) in \(X\), where \(c < c < 1\) and \(F(T_1) \neq \emptyset\), then \(F(T_2) \neq \emptyset\) and \(F(T_1) = F(T_2)\).

Proof. Let \(u \in F(T_1)\), then \(u \in T_1 u\). By \((4.1.4)\), we have

\[
d^2(u, T_2 u) \leq H^2(T_1 u, T_2 u)
\]

\[
\leq c \max \left\{ [d(u, T_1 u) d(u, T_2 u) + d(u, T_2 u) d(u, T_1 u)] \right\}
\]
\[\frac{1}{2} \left\{ d(u, T_2u) \ d(u, T_1u) + d(u, T_1u) d(u, T_1u) \right\} \]

i.e.,
\[d^2(u, T_2u) \leq \frac{c}{2} \ d^2(u, T_1u) \]

which implies \(d(u, T_2u) = 0 \). Since \(T_2u \) is closed, this shows that \(u \in T_2 u \) which implies \(F(T_1) \subset F(T_2) \). Analogously \(F(T_2) \subset F(T_1) \).

Theorem 1. Let \((X, d)\) be a complete metric space and let
\(T_1 \circ T_2 : (X, d) \rightarrow CB(X) \) be two multifunctions such that (4.1.3) holds for all \(x, y \) in \(X \) for which \(\delta^{P_m}(x, T_1 x) + \delta^{P_m}(y, T_2 y) \neq 0 \).

where \(0 < c < 1, m \geq 1, p \geq 2 \) and \(m < p \). Then \(T_1 \) and \(T_2 \) have common fixed points and \(F(T_1) = F(T_2) \).

Proof. Choose a real number \(q \) such that

\[1 < q < (c)^{-1/m} \]

Let \(x_0 \in X \) and \(x_1 \in T_1 x_0 \). Then there is an \(x_2 \in T_2 x_1 \) so that \(d(x_1, x_2) \leq q H(T_1 x_0, T_2 x_1) \). Suppose \(x_3, x_4, \ldots, x_{2n-1}, x_{2n}, \ldots \) could be chosen so that \(x_{2n-1} \in T_1 x_{2n-2}, x_{2n} \in T_2 x_{2n-1} \) and

\[d(x_{2n-1}, x_{2n}) \leq q H(T_1 x_{2n-2}, T_2 x_{2n-1}) \]

\[d(x_{2n-2}, x_{2n-1}) \leq q H(T_1 x_{2n-2}, T_2 x_{2n-3}) \]
Suppose first of all that
\[\delta \rho^n(x_{2n-2}, T_1 x_{2n-2}) + \delta \rho^n(x_{2n-1}, T_2 x_{2n-1}) = 0 \]
for some \(n \). Then \(x_{2n-2} = T_1 x_{2n-2} = x_{2n-1} = T_2 x_{2n-1} \) and \(x_{2n-2} = x_{2n-1} \) is a common fixed point of \(T_1 \) and \(T_2 \). Similarly,
\[\delta \rho^n(x_{2n-1}, T_2 x_{2n-1}) + \delta \rho^n(x_{2n}, T_1 x_{2n}) = 0 \]
for some \(n \) implies that \(x_{2n-1} = x_{2n} \) is a common fixed point of \(T_1 \) and \(T_2 \). Now suppose that
\[\delta \rho^n(x_{2n-2}, T_1 x_{2n-2}) + \delta \rho^n(x_{2n-1}, T_2 x_{2n-1}) \neq 0 \]
and
\[\delta \rho^n(x_{2n-1}, T_2 x_{2n-1}) + \delta \rho^n(x_{2n}, T_1 x_{2n}) \neq 0 \]
for \(n = 1, 2, \ldots \).

Then, by (4.1.3), we have successively
\[
d^m(x_{2n-1}, x_{2n}) \leq c \rho^m H^m(T_1 x_{2n-2}, T_2 x_{2n-1})
\]
\[
\leq c \rho^m \max \left\{ \frac{d^p(x_{2n-2}, T_1 x_{2n-2}) + d^p(x_{2n-1}, T_2 x_{2n-1})}{\delta \rho^m(x_{2n-2}, T_1 x_{2n-2}) + \delta \rho^m(x_{2n-1}, T_2 x_{2n-1})}, \frac{d^p(x_{2n-2}, T_2 x_{2n-1}) + d^p(x_{2n-1}, T_1 x_{2n})}{\delta \rho^m(x_{2n-2}, T_1 x_{2n-2}) + \delta \rho^m(x_{2n-1}, T_2 x_{2n-1})} \right\}
\]
\[
\leq \frac{1}{2^{p-1}} \max \left\{ \frac{d^p(x_{2n-2}, x_{2n-2}) + d^p(x_{2n}, x_{2n})}{\delta \rho^m(x_{2n-2}, T_1 x_{2n-2}) + \delta \rho^m(x_{2n-1}, T_2 x_{2n-1})}, \frac{d^p(x_{2n-2}, x_{2n-2}) + d^p(x_{2n-1}, x_{2n})}{\delta \rho^m(x_{2n-2}, T_1 x_{2n-2}) + \delta \rho^m(x_{2n-1}, T_2 x_{2n-1})} \right\}
\]
\[
\frac{1}{2^{p-1}} \frac{d^P(x_{2n-2}^* x_{2n})}{d^{P_m}(x_{2n-2}^* x_{2n-1}) + d^{P_m}(x_{2n-1}^* x_{2n})}
\]

\[
\leq \text{eq}^m \max \left\{ \frac{d^P(x_{2n-2}^* x_{2n-1}) + d^P(x_{2n-1}^* x_{2n})}{d^{P_m}(x_{2n-2}^* x_{2n-1}) + d^{P_m}(x_{2n-1}^* x_{2n})} \right\}
\]

\[
\leq \text{eq}^m \frac{d^P(x_{2n-2}^* x_{2n-1}) + d^P(x_{2n-1}^* x_{2n})}{d^{P_m}(x_{2n-2}^* x_{2n-1}) + d^{P_m}(x_{2n-1}^* x_{2n})}
\]

\[
\leq \frac{1}{2^{p-1}} \left[\frac{d(x_{2n-2}^* x_{2n-1}) + d(x_{2n-1}^* x_{2n})}{d^{P_m}(x_{2n-2}^* x_{2n-1}) + d^{P_m}(x_{2n-1}^* x_{2n})} \right]^P
\]

\[
\left. \begin{align*}
\leq \text{eq}^m &+ \frac{1}{2} \left\{ d^P(x_{2n-2}^* x_{2n-1}) + d^P(x_{2n-1}^* x_{2n}) \right\} \\
> \frac{1}{2} \left\{ d(x_{2n-2}^* x_{2n-1}) + d(x_{2n-1}^* x_{2n}) \right\}^P
\end{align*} \right\}
\]

If \(x_{2n-1} \neq x_{2n} \), then

\[
d^P(x_{2n-1}^* x_{2n}) \cdot (1 - \text{eq}^m) + d^m(x_{2n-1}^* x_{2n}) \cdot d^{P_m}(x_{2n-2}^* x_{2n-1})
\]

\[
-\text{eq}^m \cdot d^P(x_{2n-2}^* x_{2n-1}) \leq 0
\]

and

\[
t^P(1 - \text{eq}^m) + t^m - \text{eq}^m \leq 0, \text{ where } t = \frac{d(x_{2n-1}^* x_{2n})}{d(x_{2n-2}^* x_{2n-1})}.
\]
Let \(f : [0, \infty) \to \mathbb{R} \) be the function \(f(t) = t^p(1-e^{q^m}) + t^m - e^{q^m} \).

Then \(f'(t) > 0 \) for any \(t > 0 \), \(f(0) < 0 \) and \(f(1) = 2(1-e^{q^m}) > 0 \) by (4.1.3). Let \(k \in (0,1) \) be the root of the equation \(f(t) = 0 \), then \(f(t) \leq 0 \) for \(t \leq k \) and thus

\[
d(x_{2n-1}, x_{2n}) \leq kd(x_{2n-2}, x_{2n-1}) \quad \text{for } n = 1, 2, \ldots
\]

Similarly we have

\[
d(x_{2n}, x_{2n+1}) \leq kd(x_{2n-1}, x_{2n}) \quad \text{for } n = 1, 2, \ldots
\]

Repeating the above argument, we obtain

\[
d(x_n, x_{n-1}) \leq k^n d(x_0, x_1).
\]

Then, by a routine calculation, we can show that \(\{x_n\} \) is a Cauchy sequence and since \(X \) is complete, we have \(\lim x_n = x \) for some \(x \in X \). If we now suppose that \(d(u, \bar{u}) > 0 \), then

\[
d^m(x_{2n}, \bar{u}) \leq \left(\frac{d^p(u, \bar{u}) + d^p(x_{2n-1}, T_2x_{2n-1})}{\delta^p(u, \bar{u})+\delta^p(x_{2n-1}, T_2x_{2n-1})} \right)_{\frac{1}{2^{n-1}}} \]

\[
\leq \max \left\{ \frac{d^p(u, \bar{u}) + d^p(x_{2n-1}, T_2x_{2n-1})}{\delta^p(u, \bar{u})+\delta^p(x_{2n-1}, T_2x_{2n-1})}, \frac{d^p(x_{2n-1}, \bar{T}_1u)+d(x_{2n-1}, \bar{T}_1u)}{\delta^p(u, \bar{u})+\delta^p(x_{2n-1}, T_2x_{2n-1})} \right\}
\]
\[\leq c \max \left\{ \frac{d^p(u, T_1 u) + d^p(x_{2n-1}, x_{2n})}{d^{p^m}(u, T_1 u) + d^{p^m}(x_{2n-1}, x_{2n})}, \frac{1}{2^{p-1}} \frac{d^p(u, T_1 u) + d^p(x_{2n-1}, T_1 u)}{d^{p^m}(u, T_1 u) + d^{p^m}(x_{2n-1}, x_{2n})} \right\} \]

and on letting \(n \) tends to infinity, we have

\[d(u, T_1 u) \leq (c)^{1/m} d(u, T_1 u), \] giving a contradiction, since

\((c)^{1/m} < 1 \). It follows that \(d(u, T_1 u) = 0 \). Since \(T_1 u \) is closed,
this shows that \(u \in T_1 u \). By Lemma 1, \(u \in T_2 u \) and \(F(T_1) = F(T_2) \).

If \(T_1 \) and \(T_2 \) are single valued mappings, we have the following:

Theorem 2. Let \(T_1 \) and \(T_2 \) be mappings of a complete metric
space into itself such that

\[d^m(T_1 x, T_2 y) \leq c \max \left\{ \frac{d^p(x, T_1 x) + d^p(y, T_2 y)}{d^{m^p}(x, T_1 x) + d^{m^p}(y, T_2 y)}, \frac{1}{2^{p-1}} \frac{d^p(x, T_2 y) + d^p(y, T_1 x)}{d^{m^p}(x, T_1 x) + d^{m^p}(y, T_2 y)} \right\} \]

for all \(x, y \) in \(X \) for which \(d^{m^p}(x, T_1 x) + d^{m^p}(y, T_2 y) \neq 0 \),

where \(0 < c < 1, \ m \geq 1, \ p \geq 2, \ m < p \), then \(T_1 \) and \(T_2 \) have
common fixed points and \(F(T_1) = F(T_2) \). Further, if
$d^{p-m}(x, T_1x) + d^{p-m}(y, T_2y) = 0$ implies $d(T_1x, T_2y) = 0$, the fixed point u is unique.

The existence follows from Theorem 1. Now suppose that T_1 and T_2 have a second fixed point u'. Then $\{d(u, T_1u)\}^{p-m} + \{d(u', T_2u')\}^{p-m} = 0$ implies $d(T_1u, T_2u') = 0$ and therefore $u = T_1u$, $u' = T_2u'$ and $T_1u = T_2u'$. Thus the common fixed point of T_1 and T_2 is, in this case, unique.

Remark. On taking $p = 2$ and $m = 1$ in Theorem 2, we obtain Theorem A.

Theorem 3. Let (X, d) be a complete metric space and let $T_1, T_2 : (X, d) \to CB(X)$ be two multifunctions such that (4.1.4) holds for all x, y in X, where $0 < c < 1$. Then T_1 and T_2 have common fixed points and $F(T_1) = F(T_2)$.

Proof. Choose a real number q such that

\[(4.1.7) \quad 1 < q < \sqrt{1/c}.

Let $x_0 \in X$ and $x_1 \in T_1x_0$. Then there is an $x_2 \in T_2x_1$ so that $d(x_1, x_2) \leq qH(T_1x_0, T_2x_1)$. Suppose $x_3, x_4, \ldots, x_{2n-1}, x_{2n}, \ldots$ could be chosen so that $x_{2n-1} \in T_1x_{2n-2}$, $x_{2n} \in T_2x_{2n-1}$ and

\[d(x_{2n-1}, x_{2n}) \leq qH(T_1x_{2n-2}, T_2x_{2n-1})\]

\[d(x_{2n-2}, x_{2n-1}) \leq qH(T_1x_{2n-2}, T_2x_{2n-3}).\]
By (4.1.4), for $x = x_{2n-2}$ and $y = x_{2n-1}$ we have

$$d^2(x_{2n-1}, x_{2n}) \leq q^2 d^2(T_1 x_{2n-2}, T_2 x_{2n-1})$$

$$\leq q^2 c \max \left\{ d(x_{2n-2}, T_1 x_{2n-2}) d(x_{2n-1}, T_2 x_{2n-1}) + d(x_{2n-2}, T_2 x_{2n-1}) d(x_{2n-1}, T_1 x_{2n-2}) \right\}$$

$$\leq q^2 c \max \left\{ d(x_{2n-2}, x_{2n-2}) d(x_{2n-1}, x_{2n}) + \frac{1}{2} d(x_{2n-2}, x_{2n}) d(x_{2n-1}, x_{2n}) \right\}$$

which simply implies

$$d(x_{2n-1}, x_{2n}) \leq q^2 c d(x_{2n-2}, x_{2n-1})$$

Analogously, we have

$$d(x_{2n-2}, x_{2n-1}) \leq q^2 c d(x_{2n-3}, x_{2n-2})$$

Repeating the above argument, we get

$$d(x_n, x_{n-1}) \leq (q^2 c)^n d(x_0, x_1), \text{ where } q^2 c < 1 \text{ from (4.1.7)}.$$

Then, by routine calculation, one can show that $\{x_n\}$ is Cauchy sequence and since (X, d) is complete, we have
\[\lim x_n = u \text{ for some } u \in X. \text{ If we now assume that} \]
\[d(u, T_1 u) \neq 0, \text{ then (4.1.4) yields} \]
\[d^2(x_{2n}, T_1 u) \leq H^2(T_2 x_{2n-1}, T_1 u) \]
\[\leq c \max \{ [d(u, T_1 u) d(x_{2n-1}, T_2 x_{2n-1})] \]
\[+ d(u, T_2 x_{2n-1}) d(x_{2n-1}, T_1 u) \} \]
\[- \frac{1}{2} [d(u, T_2 x_{2n-1}) d(x_{2n-1}, T_2 x_{2n-1}) + d(u, T_1 u) d(x_{2n-1}, T_1 u)] \]
\[\leq c \max \{ [d(u, T_1 u) d(x_{2n-1}, x_{2n})] + d(u, x_{2n}) d(x_{2n-1}, T_1 u) \} \]
\[- \frac{1}{2} [d(u, x_{2n}) d(x_{2n-1}, x_{2n}) + d(u, T_1 u) d(x_{2n-1}, T_1 u)] \}.
\]
Now letting \(n \to \infty \), we obtain \(d^2(u, T_1 u) \leq \frac{1}{2} d^2(u, T_1 u) \),
giving a contradiction since \(0 < c < 1 \). It follows that
\(d(u, T_1 u) = 0 \). Since \(T_1 u \) is closed, this shows that \(u \in T_1 u \).
By Lemma 2, \(u \in T_2 u \) and \(F(T_1) = F(T_2) \).

4.2. The purpose of this section is to obtain similar
common fixed point theorems for a sequence of multifunctions
which generalize Theorem A and B.

Theorem 4. Let \((X, d)\) be a complete metric space and \(\{T_n\} \in \mathbb{N} \)
a sequence of multifunction of \(X \) into \(CB(X) \) such that
\[(4.2.1) \quad H^p(T_1 x, T_n y) \leq c \max \left\{ \frac{d^p(x, T_1 x) + d^p(y, T_n y)}{d^p(x, T_1 x) + d^p(y, T_n y)} \right\}, \]
\[
\frac{1}{2^{p-1}} \frac{d^P(x, T_n y) + d^P(y, T_n x)}{\delta^{p-m}(x, T_1 x) + \delta^{p-m}(y, T_1 y)}
\]

holds for all \(x, y\) in \(X\), \(n \geq 2\), \(0 < c < 1\), \(m \geq 1\), \(p \geq 2\), \(m < p\) for which \(\delta^{p-m}(x, T_1 x) + \delta^{p-m}(y, T_1 y) = e\). Then \(\{ T_n \}_{n \in \mathbb{N}}\) has common fixed points and \(F(T_1) = F(T_n)\).

Proof. It follows by Theorem 1 and Lemma 1.

Theorem 5. Let \((X, d)\) be a complete metric space and \(\{ T_n \}_{n \in \mathbb{N}}\) a sequence of multifunctions of \((X, d)\) into \(CB(X)\) such that

\[
\tag{4.2.2}
\{ H(T_1 x, T_n y) \}^2 \leq c \max \left\{ d(x, T_1 x) d(y, T_n y) + d(x, T_n y) d(y, T_1 x) \right\}
\]

holds for all \(x, y \in X\) and \(n \geq 2\), where \(0 < c < 1\). Then \(\{ T_n \}_{n \in \mathbb{N}}\) has common fixed points and \(F(T_1) = F(T_n)\).

Proof. It follows by Theorem 3 and Lemma 2.

4.3. We conclude this chapter by considering a metric space with two metrics \(e\) and \(d\) and by obtaining fixed point theorems for sequence of multifunctions. For the proof of the theorems we require the following lemma.
Lemma 3. (Popa [2], Theorem 4) Let X and Y be two topological spaces. If the multifunction $F : X \rightarrow Y$ with Y, a T_3 space, is u.s.c. and $F(x)$ is closed subset of X for all $x \in X$, then F has the closed graph.

Theorem 6. Let (X,d) be a metric space with two metrics e and d. If X satisfies the following conditions:

1. $e(x,y) \leq d(x,y)$ for any $x,y \in X$,
2. X is complete with respect to e,
3. two multifunctions $T_1,T_2 : X \rightarrow X$ are punctually closed and punctually bounded with respect to both metrics,
4. T_1 or T_2 u.s.c. with respect to e,
5. The inequality (4.1.3) holds for all x,y in X for which $d^{P-m}(x,T_1x) + d^{P-m}(y,T_2y) < e$, where $0 < e < 1$, $m \geq 1$, $p \geq 2$, $m < p$.

Then T_1 and T_2 have common fixed points and $F(T_1) = F(T_2)$.

Proof. Analogously as in the proof of Theorem 1, for any $x_0 \in X$, we can construct a sequence $\{x_n\}$ such that $x_{2n+1} \in T_1x_{2n}$, $\{x_n\}$ is a Cauchy sequence with respect to d. Therefore, by $e \leq d$, $\{x_n\}$ is a Cauchy sequence with respect to e, and since X is complete with respect to e, $x_n \rightarrow x$.

As T_1 is u.s.c. from Lemma 3, T_1 has closed graph and then from $x_{2n+1} \notin T_1'x_{2n}$ results $x \notin T_1'x$ and from Lemma 1,
$F(T_1) = F(T_2)$.

Theorem 7. Let X be a metric space with two metrics e and d. If X satisfies the conditions $(4.3.1)-(4.3.4)$ and the inequality $(4.1.4)$ holds for all $x, y \in X$, where $0 < c < 1$, then T_1 and T_2 have common fixed points and $F(T_1) = F(T_2)$.

Proof. Analogously as in the proof of Theorem 3, for any $x_0 \in X$, we can construct a sequence $\{x_n\}$ such that $x_{2n+1} \in T_1'x_{2n}$, $\{x_n\}$ is a Cauchy sequence with respect to d. Applying Lemma 2 in place of Lemma 1, the remaining proof is similar to the proof of Theorem 6.

Theorem 8. Let X be a metric space with two metrics e and d. If X satisfies the following conditions:

(4.3.6) The sequence of multifunctions $\{T_n\}_{n \in \mathbb{N}}$ is formed by punctually closed and punctually bounded with respect to both metrics,

(4.3.7) e, d and T_1 satisfy conditions $(4.3.1), (4.3.2)$ and $(4.3.4)$,

(4.3.8) the inequality $(4.2.1)$ holds for all $x, y \in X$ for which $d^p(x, T_1x) + d^p(y, T_1y) = 0$, where $n \geq 2$.,
\[0 < c < 1, \ m \geq 1, \ p \geq 2, \ m < p. \]

then \(\{T_n\}_{n \in \mathbb{N}} \) has common fixed points and \(F(T_1) = F(T_n) \).

Proof. It follows by Theorem 6 and Lemma 1.

Theorem 9. Let \(X \) be a metric space with two metrics \(e \) and \(d \). If \(X \) satisfies the conditions (4.3.6), (4.3.7) and the inequality (4.2.2) holds for all \(x, y \) in \(X \), \(n \geq 2 \) and \(0 < c < 1 \), then \(\{T_n\}_{n \in \mathbb{N}} \) has common fixed points and \(F(T_1) = F(T_n) \).

Proof. It follows by Theorem 7 and Lemma 2.