Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ix</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>xi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xxiii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1.1 General 1
1.2 Biopolymer 2
1.3 Classification of biopolymers 3
 1.3.1 Category 1: Polymers from biomass such as agro-polymers from agro resources 3
 1.3.2 Category 2: Polymers obtained by microbial production or genetically modified bacteria 5
 1.3.3 Category 3: Polymers conventionally and chemically synthesized using renewable biobased monomers obtained from agro-resources 7
 1.3.4 Category 4: Polymers whose monomers are obtained conventionally by chemical synthesis process that are specifically petroleum based 7
1.4 Polyhydroxyalkanoates 8
1.5 Occurrence of PHA 10
1.6 Substrates used for PHA production 12
1.7 Structure and classification of PHA 13
 1.7.1 Structure of PHA Granules 13
 1.7.2 Classification of PHA 18
 1.7.3 Metabolic pathway of PHA Biosynthesis 19
 1.7.4 Enzymes involved in the PHA Biosynthesis 20
 1.7.4.1 PHA synthase (PhaC) 20
1.7.4.2 β-ketothiolase (PhaA) 22
1.7.4.3 Acetoacetyl CoA reductase (PhaB) 22
1.7.5 PHA biosynthesis pathway 23
1.8 Detection, extraction and characterization of PHAs 25
 1.8.1 Detection method 25
 1.8.2 Extraction of PHAs 25
 1.8.2.1 Solvent extraction 26
 1.8.2.2 Digestion methods 26
 1.8.2.2.1 Digestion by surfactants 26
 1.8.2.2.2 Digestion by sodium hypochlorite 27
 1.8.2.2.3 Enzymatic digestion 27
 1.8.3 Quantification and compositional analysis of PHA 27
 1.8.3.1 Quantification of PHA 27
 1.8.3.2 FTIR spectroscopy 28
 1.8.3.3 Gas chromatography and mass spectroscopy (GCMS) 28
 1.8.3.4 NMR spectroscopy 28
1.9 Physical properties 28
1.10 Biodegradation of PHA 29
1.11 Applications of PHA 30
1.12 Molecular identification of bacterial isolates 31

Chapter 2: Review of Literature
 2.1 Screening of PHA production in bacteria 34
 2.2 PHA production in specific bacteria 35
 2.3 Production of PHA in higher organisms 37
 2.3.1 Yeasts 37
 2.3.2 Insects 38
 2.3.3 Plants 38
 2.4 Fermentation process 39
 2.5 Recovery of PHA 42
 2.6 Chemical structure of PHAs 44
 2.7 Physical properties of PHAs 45
Chapter 3: Material and Methods

3.1 Plasticware/glassware used
3.2 Chemicals used
3.3 Microbial strains
3.4 Equipment used
3.5 Media composition
 3.5.1 Maintenance media
 3.5.2 Inoculum media
 3.5.3 Production media
3.6 Microbiological methods
 3.6.1 Sterilization of the media and glass wares
 3.6.2 Collection of environmental samples
 3.6.3 Pure culture of biopolymer producing bacterial isolates
 3.6.4 Routine maintenance and preservation of microorganisms
 3.6.5 Taxonomic identification of biopolymer producing bacteria
 3.6.6 Inoculum preparation
3.7 Polyhydroxyalkanoate (PHA) production
 3.7.1 Shake flask culture
 3.7.2 Gram’s staining
 3.7.3 Staining for intracellular PHA detection
 3.7.3.1 Staining of cells with Sudan black B
 3.7.3.2 Staining of cells with Nile Blue A
3.8 Morphological characterization of bacteria
3.9 Biochemical characterization study
 3.9.1 Catalase test
 3.9.2 Urease test
3.9.3 Citrate test 62
3.9.4 Triple sugar iron test 62
3.9.5 Nitrate reduction test 63
3.9.6 Indole production test 64
3.9.7 H$_2$S production test 64
3.9.8 Litmus milk reaction test 65
3.9.9 Methyl red-Voges-Proskauer (MR-VP) broth 65
3.9.10 Extracellular enzyme activity (hydrolysis) test medium 66
3.9.11 Carbohydrate fermentation medium 67

3.10 Analytical techniques 68
3.10.1 Biomass estimation 68
3.10.2 Polymer extraction and purification 68
3.10.3 Quantification of PHA 69
3.10.3.1 Gravimetric method 69
3.10.4 Characterization of PHA 69
3.10.4.1 UV-Visible spectrophotometer analysis 69
3.10.4.2 FTIR analysis 69
3.10.4.3 GC-MS analysis 70
3.10.4.4 NMR analysis 70
3.10.4.5 Crystallinity study by XRD 71
3.10.4.6 Surface study by SEM 71
3.10.4.7 Determination of molecular weight by GPC 71
3.10.4.8 Thermal property 71
3.10.4.8.1 DSC analysis 71
3.10.4.8.2 TGA analysis 72
3.10.4.9 PL study 72

3.11 In vitro biodegradation study of PHA using different soil microorganisms 72
3.11.1 Preparation of polymer film 72
3.11.2 Microorganism used 73
3.11.3 SEM observation

3.11.4 FTIR spectroscopy analysis

3.12 Application of PHA in enhancing the stability of colloidal silver nanoparticles (SNP)

3.12.1 Synthesis of SNP in PHA dispersed colloid

3.12.2 Fourier-transform-infrared (FTIR) spectroscopic analysis

3.12.3 Stability analysis of SNP solution using UV-Vis spectrophotometer

3.12.4 TEM analysis

3.13 Photoluminescence study of the nanoparticles-biopolymer hybrid

3.13.1 Experiment

3.13.2 Characterization

3.14 Application of PHA for composite based biosensor preparation with gold nanoparticles (AuNPs) for the detection of antimalarial drug ‘artemisinin’

3.14.1 Reagents and materials

3.14.2 Characterization

3.14.3 Preparation of PHA-Au nanocomposite film

3.14.4 Immobilization of HRP on PHA-Au nanocomposite film

3.14.5 Preparation of artemisinin samples

3.15 Isolation of chromosomal DNA

3.15.1 Agarose gel electrophoresis

3.15.2 PCR amplification of 16S- rRNA gene

3.15.3 Phylogenetic analysis

3.16 PCR based identification of the PHA biosynthetic genes in bacterial strains

3.17 Statistical Analysis

Chapter 4: Results

4.1 Screening of Biopolymer producing microbes
4.1.1 Isolation and pure culture of microbes capable of producing biopolymer 83
4.1.2 Morphological characterization of bacterial isolates 84
4.1.3 Screening of biopolymer (PHA) producing bacterial isolates 84
4.1.4 Screening of PHA producing bacterial isolate by staining procedure 86
4.1.5 Cell size determination by SEM analysis 89
4.1.6 Biochemical characterization of the PHA producing bacterial strains 90

4.2 Growth determination of PHA producing bacterial strains 90
4.2.1 Growth of bacterial strains at different pH levels 90
4.2.2 Growth of bacterial strains at different temperatures 93
4.2.3 PHA production by the bacterial strains at different growth phases 94
4.2.4 PHA production by the bacterial strains in different carbon substrates 94

4.3 Physical and chemical characterization of PHA 96
4.3.1 UV analysis of PHA 96
4.3.2 FTIR analysis of PHA 97
4.3.3 GC-MS analysis of PHA 100
4.3.4 NMR analysis of PHA 105
4.3.5 Physical analysis of PHA 109
4.3.5.1 Molecular weight determination of the PHA by Gel Permeation Chromatography (GPC) 109
4.3.5.2 Crystallinity study of the PHA by X-Ray diffraction (XRD) 112
4.3.5.3 Thermogravimetric (TGA) analysis of PHA 114
4.3.5.4 Differential scanning calorimetry (DSC) analysis of PHA 115
4.3.5.5 Photoluminescence (PL) study of PHA 116
4.3.5.6 Surface morphology study of PHA using SEM

4.4. Biodegradation of PHA from *B. circulans* MTCC8167, *P. aeruginosa* JQ796859 and *P. aeruginosa* JQ866912

4.5 Application of PHA of *B. circulans* MTCC8167 strain in enhancing the stability of colloidal silver nanoparticles (SNP)

4.5.1 Characterization by using FTIR spectroscopy	126
4.5.2 Characterization of SNP-PHA by TEM	127
4.5.3 Characterization of SNP-PHA by UV-Vis spectroscopy	128

4.6 Photoluminescence study of PHA from *P. aeruginosa* JQ866912, its behavior study using different nanoparticles

4.6.1 XRD analysis of PHA- metal oxide nanoparticles hybrids	129
4.6.2 Optical properties of PHA- metal oxide nanoparticle hybrids	131
4.6.3 SEM analysis	133

4.7 Application of PHA for composite based biosensor preparation with gold nanoparticles (AuNPs) for detection of antimalarial drug-Artemisinin

4.7.1 Cyclic voltametry (CV)	134
4.7.2 EIS study	137
4.7.3 SEM study	139
4.7.4 Application to real sample	140

4.8 Molecular genetic assessment of PHA producing bacterial isolates

| 4.8.1 Phylogenetic analysis of PHA producing bacterial isolates based on sequencing the conserved region of 16S rRNA gene | 142 |
| 4.8.1.1 Phylogeny of strain BPC1 | 143 |
4. 8.1.2 Phylogeny of strain BP2
4.8.1.3 Bacterial identification and re-designation
4.8.1.4 Taxonomic identification of BP2 strain

4.8.2. PCR based identification of the PHA biosynthetic genes in *P. aeruginosa* strains JQ796859 and JQ866912

Chapter 5: Discussion

5.1 Screening of Biopolymer producing bacteria
5.1.1 Isolation and pure culture of bacteria
5.1.2 Morphological characteristics of bacteria
5.1.3 Screening of biopolymer producing bacterial strains

5.2 Biochemical characterization of the PHA producing bacterial strains
5.3 Growth of bacterial strains at different pH levels
5.4 Growth of bacterial strains at different temperatures
5.5 PHA production by the bacterial strains at different growth phases
5.6 PHA production by the bacterial strains in different carbon substrates

5.7 Physicochemical characterization of PHA
5.7.1 Light absorption by PHA
5.7.2 FTIR analysis of PHA
5.7.3 GC-MS analysis of PHA
5.7.4 NMR analysis of PHA

5.8 Physical analysis of PHA
5.8.1 Molecular weight determination of the PHA
5.8.2 Crystallinity study of the PHA
5.8.3 Thermogravimetric (TGA) analysis
5.8.4 Differential scanning calorimetry (DSC) analysis
5.8.5 Photoluminescence (PL) study
5.8.6 Surface morphology study of PHA
5.9 Biodegradation of the PHA from \textit{B. circulans} MTCC8167, \textit{P. aeruginosa} JQ796859 and \textit{P. aeruginosa} JQ866912

5.10 Application of PHA of \textit{B. circulans} MTCC8167 in enhancing the stability of colloidal silver nanoparticles (SNP)

5.10.1 Characterization by using FTIR spectroscopy

5.10.2 Characterization of SNP-PHA by TEM

5.10.3 Characterization of SNP-PHA by UV-Vis spectroscopy

5.11 Photoluminescence study of PHA from \textit{P. aeruginosa} JQ866912, its behavior study using different nanoparticles

5.11.1 XRD analysis of PHA-metal oxide nanoparticles hybrids

5.11.2 Optical properties of PHA-metal oxide nanoparticles hybrids

5.11.3 SEM analysis

5.12 Application of PHA for composite based biosensor preparation with gold nanoparticles (AuNPs) for detection of antimalarial drug-Artemisinin

5.12.1 Cyclic voltametric (CV) study

5.12.2 EIS study

5.12.3 SEM study

5.12.4 Application to real sample

5.13 Molecular genetic assessment of PHA producing bacterial strains

5.13.1 Genotypic characterization of strain \textit{P. aeruginosa} JQ796859 and \textit{P. aeruginosa}

5.13.2 PCR based identification of the PHA biosynthetic genes in \textit{P. aeruginosa} strains JQ796859 and JQ866912
Chapter 6: Conclusion and Future research

6.1 Conclusion 173
6.2 Future projections 174
Bibliography 175
List of publications 207