Contents

Preface i

Chapter 1
Development and Fundamentals of Thin Film Solar Cells 5
1.1 Introduction 5
1.2 Outline of Solar Cell Development 7
1.3 Fundamental Principles of Solar Cell Devices 9
 1.3.1 Electronic Analysis of a pn Junction 10
 1.3.2 Power Output and Performance efficiency 13
1.4 Complexity of Manufacturing 18
1.5 Types Of Solar Cell 18
 1.5.1 Silicon Solar Cells 19
 i. Single-crystalline Silicon 19
 ii. Polycrystalline Silicon 20
 iii. Amorphous Silicon 20
 1.5.2 Group III-V technology 21
 i. Gallium Arsenide 21
 ii. Indium Phosphide 22
 1.5.3 Polycrystalline Thin Films 23
1.6 Thin Film Photovoltaics 23
1.7 I-III-VI₂ Thin Films 25
1.8 CIS Based Solar Cells 26
1.9 Configurations for CIS solar Cells 29
 1.9.1 Substrate Solar Cells 29
 1.9.2 Superstrate Solar Cells 30
1.10 Future of Solar Cells 31
1.11 Objective of This Research Work 32
References 34

Chapter 2
Deposition and Characterization Techniques for Thin Films 43
2.1 Introduction 43
2.2 Thin Film Deposition 43
2.3 Chemical Deposition
2.4 Physical deposition
 2.4.1 Physical Vapor Deposition
2.5 Thermal evaporation
 2.5.1 Comparison to Other Deposition Methods
2.6 Other Deposition Processes
2.7 Two Stage Process
 2.7.1 Sulfurisation Set up
 2.7.2 Selenization Set up
 2.7.3 Substrate Cleaning
2.8 Characterisation of the Thin Films Prepared
 2.8.1 Thin Film Thickness
 i Quartz Crystal Microbalance
 ii Stylus Thickness Profiler
 2.8.2 Structural Characterisations
 i X-ray Diffraction (XRD) technique
 ii Scanning Electron Microscopy
 iii Energy Dispersive X-ray Analysis
 2.8.3 Optical characterisations
 i Absorption Coefficient and Band Gap
 2.8.4 Electrical characterisations
 i Resistivity by Two Probe Method
 ii Temperature Dependence of Conductivity

References

Chapter 3
Growth of β-Indium Sulfide Buffer Layer by Two Stage Process
 3.1 Introduction
 3.2 Material Properties of In₂S₃
 3.2.1. Crystallographic Structure
 3.2.2. Optical Properties
 3.2.3. Electrical Properties
 3.2.4. Morphological properties
 3.3 Processing Techniques for Indium Sulfide Thin Films
 3.4 Experimental Details
 3.5 Results and Discussions
 3.5.1 Crystal Structure and Composition
3.5.2 Optical Characterizations
3.5.3 Electrical Characterizations
 i. Resistivity by Two Probe Method
 ii. Temperature Dependence of Conductivity
 iii. Photosensitivity

3.6 Conclusions

Chapter 4
Preparation and Characterisation of Copper Indium Selenide Absorber Layer
4.1 Introduction
4.2 Material Properties of CuInSe$_2$
 4.2.1 Crystallographic Structure
 4.2.2 Phase Diagram
 4.2.3 Optical and Electrical properties
 4.2.4 Effect of Temperature
4.3 Various Deposition Methods for CuInSe$_2$ Thin Film Preparation
4.4 Experimental Details
 4.4.1 Preparation of Cu$_{11}$In$_9$ alloy
 4.4.2 Chalcogenisation
4.5 Results and Discussions
 4.5.1 Structural Characterisations
 4.5.2 Optical and Electrical Characterisations
4.6 Conclusions

Chapter 5
Optimisation of Process for the Growth of CuIn(Se$_{1-x}$S$_x$)$_2$ Thin Films
5.1 Introduction
5.2 Diffusion Processes and Reaction Kinetics
5.3 Experimental Details
5.4 Results and Discussions
 5.4.1 Structural Characterisations
 i XRD Studies on the Prepared Films
Chapter 6
Fabrication of Chalcopyrite Heterojunctions

6.1 Introduction 167
6.2 Fabrication of CIS Based Solar Cells 167
6.3 Solar Cell Characteristics 171
6.4 Summary 173
6.5 Future Works 174

References 176