CONTENTS

1 Introduction 1
 1.1 Preliminary 1
 1.2 Pre-work 3
 1.3 Present work 5

2 Some basic results and characterizations of geometric life time model 13
 2.1 Introduction 13
 2.2 Probabilistic properties of geometric distribution 14
 2.3 Characterization of geometric distribution 18

3 Some results on estimation of parameters of geometric distribution under Type-I progressive censoring 26
 3.1 Introduction 26
 3.2 The geometric distribution and likelihood 27
 3.3 Maximum likelihood estimation 30
 3.4 Shrinkage estimator 33
 3.5 An alternative estimator 42
 3.6 Almost unbiased estimator 45
4 Maximum likelihood estimation in geometric
life time model with two stage Type-I
censoring under different installation time 53
4.1 Introduction 53
4.2 Model and likelihood function 54
4.3 Estimators for θ_1 and θ_2 56
4.4 Numerical example 60
4.5 Bias of the estimates 61

5 Estimation of parameters of mixed geometric
failure models from Type-I progressively
censored and group censored samples 64
5.1 Introduction 64
5.2 Mixed failure model under Type-I
progressively censored sample 66
5.3 Maximum likelihood estimation 68
5.4 Asymptotic standard errors of the estimates 70
5.5 Numerical example 73
5.6 Mixed failure model under Type-I progressively
group censored sample 74
5.7 Maximum likelihood estimation from group
censored sample 76
5.8 Asymptotic standard errors of the estimates 78
5.9 Numerical example 81
6 ML estimation in geometric competing risk failure model with changing parameters from Type-I and progressively two stage Type-I censored and group censored samples

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>83</td>
</tr>
<tr>
<td>6.2 Competing risk failure model from Type-I censored samples</td>
<td>85</td>
</tr>
<tr>
<td>6.3 Likelihood estimation for Type-I censoring</td>
<td>88</td>
</tr>
<tr>
<td>6.4 Expectations and standard errors of estimates</td>
<td>89</td>
</tr>
<tr>
<td>6.5 Estimation of parameters of model (6.2.8) from group censored samples</td>
<td>91</td>
</tr>
<tr>
<td>6.6 Competing risks failure model from Type-I two-stage progressively censored samples</td>
<td>93</td>
</tr>
<tr>
<td>6.7 Likelihood estimation for two-stage Type-I progressive censoring</td>
<td>98</td>
</tr>
<tr>
<td>6.8 Expectations and standard errors of estimates</td>
<td>99</td>
</tr>
<tr>
<td>6.9 Estimation of parameters of model (6.6.2) from progressively group censored samples</td>
<td>101</td>
</tr>
<tr>
<td>6.10 Illustrative examples</td>
<td>103</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>Estimation of two parameter geometric distribution under Type-II and multiply Type-II censoring</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>ML estimation of the parameters under Type-II censoring</td>
</tr>
<tr>
<td>7.3</td>
<td>ML estimation under multiply Type-II censoring</td>
</tr>
<tr>
<td>7.4</td>
<td>Expected waiting time of the test</td>
</tr>
<tr>
<td>7.5</td>
<td>Illustrative examples</td>
</tr>
<tr>
<td>8</td>
<td>Progressively Type-II censored samples from geometric life time model</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>Estimation of parameters and reliability function</td>
</tr>
<tr>
<td>8.3</td>
<td>Determination of sample size</td>
</tr>
<tr>
<td>8.4</td>
<td>Tests for homogeneity of a selected set of parameters</td>
</tr>
<tr>
<td>8.5</td>
<td>Illustrative example</td>
</tr>
</tbody>
</table>
9 Hypogeometric distribution- a discrete life time model 137

9.1 Introduction 137
9.2 Derivation and properties of the model 138
9.3 Application of the model 143
9.4 Estimation of the parameters and fitting of the model 145

10 Best linear unbiased estimation based on order statistics from geometric distribution 148

10.1 Introduction 148
10.2 Estimation based on Type-II censored samples 149
10.3 Estimation based on multiply Type-II censored sample 153
10.4 Illustrative example 156

REFERENCES 158