LIST OF CONTENTS

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>TITLE</th>
<th>Pg No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>ABSTRACT</td>
<td>Chapter 2</td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>IODINE DEFICIENCY</td>
<td>35</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Causes of iodine deficiency</td>
<td>35</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Iodine deficiency and pregnancy</td>
<td>37</td>
</tr>
<tr>
<td>2.1.2.1</td>
<td>Effects of maternal iodine deficiency on iq of their children</td>
<td>40</td>
</tr>
<tr>
<td>2.1.2.2</td>
<td>Iodine supplementation during pregnancy</td>
<td>42</td>
</tr>
<tr>
<td>2.1.2.3</td>
<td>Prevalence of iodine deficiency during pregnancy</td>
<td>43</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Iodine deficiency in children</td>
<td>45</td>
</tr>
<tr>
<td>2.1.3.1</td>
<td>Effects on the cognition of the children</td>
<td>45</td>
</tr>
<tr>
<td>2.1.3.2</td>
<td>Effect on somatic growth</td>
<td>47</td>
</tr>
<tr>
<td>2.1.3.3</td>
<td>Prevalence of iodine deficiency in children</td>
<td>50</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Combating Iodine deficiency</td>
<td>50</td>
</tr>
<tr>
<td>2.1.4.1</td>
<td>Salt iodization strategy</td>
<td>50</td>
</tr>
<tr>
<td>2.1.4.2</td>
<td>Salt iodization as a universal norm</td>
<td>53</td>
</tr>
<tr>
<td>2.1.4.3</td>
<td>Role of small scale salt producers in controlling the prevalent iodine deficiency</td>
<td>54</td>
</tr>
<tr>
<td>2.1.4.4</td>
<td>Success of salt iodization</td>
<td>56</td>
</tr>
<tr>
<td>2.1.4.5</td>
<td>Impact of iodized salt consumption in pregnant women and children</td>
<td>59</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Iodine deficiency re-emergence</td>
<td>60</td>
</tr>
<tr>
<td>2.2</td>
<td>IRON DEFICIENCY ANEMIA</td>
<td>61</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Causes of iron deficiency anemia</td>
<td>62</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Iron deficiency during pregnancy</td>
<td>64</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Effects of anemia on maternal mortality and morbidity</td>
<td>65</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Maternal anemia and birth weight</td>
<td>66</td>
</tr>
<tr>
<td>2.2.2.3</td>
<td>Maternal iron deficiency anemia and duration of gestation</td>
<td>67</td>
</tr>
<tr>
<td>2.2.2.4</td>
<td>Maternal anemia and infant health</td>
<td>68</td>
</tr>
<tr>
<td>2.2.2.5</td>
<td>Iron supplementation and maternal iron status</td>
<td>69</td>
</tr>
<tr>
<td>2.2.2.6</td>
<td>Benefits of maternal iron supplementation on iron status of the fetus and infant</td>
<td>71</td>
</tr>
<tr>
<td>2.2.2.7</td>
<td>Prevalence of iron deficiency anemia during pregnancy</td>
<td>72</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Iron deficiency during childhood</td>
<td>73</td>
</tr>
<tr>
<td>2.2.3.1</td>
<td>Effects of iron deficiency anaemia during childhood</td>
<td>74</td>
</tr>
<tr>
<td>2.2.3.2</td>
<td>Iron deficiency and growth of the children</td>
<td>74</td>
</tr>
<tr>
<td>2.2.3.3</td>
<td>Effects of iron deficiency on cognition of the children</td>
<td>75</td>
</tr>
</tbody>
</table>
2.2.3.4 Iron supplementation in children
2.2.3.5 Prevalence of iron deficiency anaemia amongst school children
2.2.4 Programmes for prevention and management of anaemia
2.2.4.1 Problems faced during implementation of anaemia prevention and control programmes
2.2.4.2 Certain considerations for iron deficiency control programs

2.3 IODINE AND IRON DEFICIENCIES
INTERACTIONS AND THEIR EFFECTS
2.3.1 Effects on feto-maternal health
2.3.2 Effects on children
2.3.3 Other studies on human
2.3.4 Iodine, Iron deficiencies and parasitosis

2.4 FOOD FORTIFICATION: AN APPROACH TO COMBAT MICRONUTRIENT DEFICIENCIES
2.4.1 Targeted fortification
2.4.2 Mass fortification
2.4.3 Benefit: cost ratio

2.5 DOUBLE FORTIFIED SALT
2.5.1 Cost of DFS v/s Fortified Foods
2.5.2 Production and storage stability of DFS
2.5.3 Bioavailability of iodine and iron in DFS
2.5.4 Acceptability of DFS
2.5.5 Production techniques for DFS
2.5.6 Iodine and Iron content estimation from NIN-DFS
2.5.7 Efficacy trials on different formulations of DFS
2.5.7.1 Studies on NIN-DFS/IFS
2.5.7.2 Studies on MI and ZURICH-DFS
2.5.7.3 Studies on NUTRI-SALT

2.6 COMMUNITY BASED NON FOOD BASED APPROACHES TO PREVENT MICRONUTRIENT MALNUTRITION

2.7 OTHER ESSENTIAL SUPPORTIVE STRATEGIES
2.7.1 Addressing dietary diversification approaches
2.7.2 Behavior change communication (BCC) and Social marketing
2.7.3 Public Education and Social Mobilization as strategies to combat micronutrient malnutrition
Chapter 3

METHODS AND MATERIALS

3.1 OVERVIEW OF THE STUDY PHASES
3.1.1 Phase I: Impact Assessment of Double Fortified Salt Supplementation amongst Pregnant women
3.1.2 Phase II: Impact Assessment of Double Fortified Salt Supplementation amongst School children
3.1.3 Phase III: Upgrading salt iodization at local level and feasibility for Double Fortified Salt Production at local level

3.2 INDICATORS FOR DATA COLLECTION
3.3 METHODS OF DATA COLLECTION
3.3.1 Nutritional Status Assessment
3.3.1.1 Weight
3.3.1.2 Height
3.3.1.3 Body mass index (BMI)
3.3.2 Biochemical parameters
3.3.2.1 Determination of Urinary Iodine Excretion
3.3.2.2 Determination of Haemoglobin Concentration
3.3.2.3 Determination of Thyroid analytes
3.3.3 Quality estimations
3.3.3.1 Determination of iodine from iodized salt
3.3.3.2 Determination of Iodine and iron content from DFS

3.4 QUESTIONNAIRES
3.4.1 Structured Questionnaires
3.4.2 Semi structured Questionnaires

3.5 DIETARY INTAKE ASSESSMENTS
3.5.1 Dietary recall- 24 hours
3.5.2 Food frequency pattern

3.6 IQ AND COGNITIVE FUNCTION TESTS
3.6.1 Draw-a-Man Test
3.6.2 Visual Memory Test
3.6.3 Clerical Test

3.7 DATA ANALYSIS
3.8 CONDUCT OF RESEARCH WORK

Chapter 4

RESULTS AND DISCUSSION
Efficacy of Double Fortified Salt Supplementation Amongst Pregnant Women

4.1 Baseline Survey
4.1.1 General profile of the population
4.1.2 Nutritional status assessment
4.1.3 Micronutrient status of the population
4.1.3.1 Iron status assessment
4.1.3.2 Iodine Status and Thyroid Hormone Profile Assessment
4.1.4 Interrelation between parameters
4.1.5 Subsampling of the population
4.1.5.1 General profile of the subjects (N=150)
4.1.5.2 Nutritional status assessment
4.1.5.3 Micronutrient status assessment

4.2 Longitudinal Phase with Interventions and Monitoring
4.2.1 Distribution of subjects into experimental and control groups
4.2.2 Interventional strategies
4.2.2.1 Double fortified salt as a supplement

4.3 Impact Assessment of Interventions on the Subjects with Complete Three Trimester Data (N=121)
4.3.1 Impact assessment on nutritional status of the subjects
4.3.2 Impact assessment on micronutrient status
4.3.2.1 Impact assessment on Iron Status of the subjects
4.3.2.2 Impact assessment on Iodine status of the subjects
4.3.2.3 Impact assessment on Thyroid analytes
4.3.3 Interrelation between parameters
4.3.3.1 Correlation between baseline characteristics and iodine-iron status of the subjects
4.3.3.2 BMI and thyroid hormone levels
4.3.4 Impact assessment on pregnancy outcome of the subjects
4.3.4.1 Relationship between Maternal and Neonatal parameters
4.3.4.2 Thyroid function parameters of the Neonates
4.3.5 Impact assessment on dietary intake of the subjects
4.3.5.1 Dietary Recall: 24 hours
4.3.5.2 Food Frequency
4.3.6 Impact assessment on knowledge, attitude and
practices (KAP) of the subjects

DISCUSSION

IMPACT ASSESSMENT OF DFS
SUPPLEMENTATION AMONGST SCHOOL
CHILDREN

4.4 BASELINE SURVEY
4.4.1 Nutritional status assessment
4.4.2 Micronutrient status assessment
4.4.2.1 Iron status assessment
4.4.2.2 Iodine status assessment
4.4.2.3 Thyroid analytes
4.4.3 IQ and cognitive status assessment
4.4.4 Interrelation between parameters

DISCUSSION

4.5 INTERVENTIONAL STRATEGIES AND BASELINE
SURVEY OF SES STATUS OF THE POPULATION
4.5.1 Distribution of the subjects into different groups
4.5.2 Socio economic status survey of the population
4.5.3 Content estimation and stability of DFS

DISCUSSION

4.6 IMPACT ASSESSMENT ON DIFFERENT
PARAMETERS IMPLEMENTING
INTERVENTIONAL STRATEGIES
4.6.1 Impact on nutritional status
4.6.1.1 Impact on weight
4.6.1.2 Impact on height
4.6.2 Impact on micronutrient status
4.6.2.1 Impact assessment on iron status
4.6.2.2 Impact assessment on iodine status
4.6.2.3 Impact assessment on Thyroid analytes
4.6.3 Impact on IQ and cognition of the subjects
4.6.4 Interrelation between parameters
4.6.5 Impact of supplementation, NHE and BCC on dietary intake
4.6.5.1 Dietary recall -24 hours
4.6.5.2 (A) Baseline Food Frequency
(B) Impact on Frequency distribution of recommended foods

4.6.6 Impact on knowledge, attitude and practices of the
Phase III

UPGRADING SALT IODIZATION AT LOCAL LEVEL AND FEASIBILITY FOR DOUBLE FORTIFIED SALT PRODUCTION

4.7 BASELINE SALT IODIZATION LEVELS 331
4.8 INTERVENTIONS AND MONITORING OF IODIZATION LEVELS
4.8.1 Overview of the review workshops conducted 334
4.8.2 Monitoring of the salt iodization levels 338
4.9 INITIATING CONCEPT OF DFS PRODUCTION AT LOCAL LEVEL

CHAPTER 5

SUMMARY AND CONCLUSION 347-374
RECOMMENDATIONS
REFERENCES
APPENDICES