CONTENTS

Abstract I
Index VI
Nomenclature IX
Abbreviations XIII
List of Figures XIV
List of Tables XV

Chapter 1 Introduction 1
 1.1 Theme of the Doctoral Work 6

Chapter 2 Literature Review 7
 2.1 Development before the introduction of “Pinch Technology” 7
 2.2 Introduction of “Pinch Technology” 10
 2.3 Development after the Introduction of “Pinch Technology” 11
 2.3.1 Refinement in PT 13
 2.3.2 Optimization of HEN Using Techniques other than GA 17
 2.3.3 Development in GA 21
 2.3.4 Application of GA in Thermal Engineering Field 23
 2.3.5 Application of GA in HEN 24
 2.3.6 Development in Modification Techniques 27
 2.3.7 Modification in Chemical Plant Excluding Ammonia 31
 Plant Using Techniques other than GA
 2.3.8 Modification in Ammonia Plant Excluding GA 35
 2.3.9 Modification in Chemical Plant Using GA 38
 2.4 Outcome of the Review 39
 2.5 Objectives of the Present Study 39

Chapter 3 Ammonia Plant 40
 3.1 Steam Reforming Process 40
 3.1.1 Desulfurization Process 41
 3.1.2 Reforming Process 41
 3.1.3 Process for Removal of CO and CO₂ 43
 3.1.4 Methanation Process 45
 3.1.5 Synthesis Gas Compression Process 45
Synthesis and Optimization of a Thermal System Network in a Chemical Plant Using Genetic Algorithms

3.1.6 Ammonia Synthesis Process 45
3.1.7 Ammonia Liquefaction Process 46
3.1.8 CO₂ Recovery Process 46

3.2 Network of Heat Exchangers in Ammonia Production Process 47

3.3 Online Steady State Data of Ammonia Production Plant 54

Chapter 4 Synthesis, Optimization and Modification 57

4.1 Pinch Technology 58
4.1.1 Comparison between ΔT_{min} and Q_{min} Approaches 58
4.1.2 Estimation of Area, Number of Units and Shell for HEN 59
4.1.3 Estimation of Total Annual Cost of HEN 69

4.2 Genetic Algorithms 71
4.3 Modification Analysis 74
4.3.1 Network Pinch Method 75
4.3.2 Retrofitting Analysis 76

4.4 Unified Approach 78

Chapter 5 Results and Discussions 89

5.1 Optimization Using GA with ΔT_{min} Approach 90
5.2 Optimization Using GA with Q_{min} Approach 92
5.3 Comparison 96

5.4 Modification Using NPM in Existing HEN with ΔT_{min} Approach 97
5.4.1 Modification for the Usage of Hot Utility below Pinch 101
5.4.2 Modification For Cross Pinch Heat Transfer 102
5.4.3 Comparison 104

5.5 Modification Using RA in Existing HEN with ΔT_{min} Approach 105

5.6 Comparison of Data of Modified HEN Using NPM and RA with ΔT_{min} Approach 109

5.7 Modification Using NPM in Existing HEN with Q_{min} Approach 110
5.7.1 Modification for the Usage of Hot Utility Below Pinch 114
5.7.2 Modification For Cross Pinch Heat Transfer 115
5.7.3 Comparison 115

5.8 Modification Using RA in Existing HEN with Q_{min} Approach 116

5.9 Comparison of Data of Modified HEN Using NPM and RA with Q_{min} Approach 119

5.10 Comparison of Data of Modified HEN Using NPM and RA for ΔT_{min} and Q_{min} Approaches with Existing HEN 120

Contents VII
5.11 Summary of Outcome of the Present Study 123

Chapter 6 Conclusions 125
 6.1 Conclusions 125
 6.2 Scope for the Future Work 125

Appendix 126
 Appendix I Ammonia 126
 Appendix II Optimization Techniques 131
 Appendix III Procedure to Operate Computer Program 145
 Appendix IV Sample Calculation 147

References 177

Publications from the Thesis 204

Acknowledgement 206