LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Closed Loop Control for a HVDC Plant</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Closed Loop Control of a HVDC Plant Employing Intelligent Controllers.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Single Line Representation of a HVDC System</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Complete Control Characteristics of a HVDC System</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Block Diagram of the Rectifier Pole Current Controller.</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Representation of Membership Functions.</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Basic Block Diagram of Fuzzy Logic Controller</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Flow Chart of a Fuzzy Logic Controller</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>A Three Layer Neural Network.</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Out Put of Neural Network.</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Signal Propagation from input to hidden Layer.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Signal Propagation from hidden to Output Layer.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Computation of Output</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Computation of Error</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Traversal of Error.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Error Back Propagation in Hidden Layers.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.15</td>
<td>Recalculations of Weights.</td>
<td>44</td>
</tr>
</tbody>
</table>
Figure 4.1 HVDC Test System.
Figure 4.2 Details of the ac System Representation of either Side
Figure 4.3 Single Input-two Output Neural network for obtaining Controller gains K_P and K_I.
Figure 4.4 Neural Network after the Application of Initial Weights.
Figure 4.5 Flow Chart to Train a Neural Network.
Figure 4.6 Block Diagram of PI Controller
Figure 4.7(a) Dc Link Current for Single Line to Ground Fault at the Inverter for Conventional Controller
Figure 4.7(b) Dc Link Current for Single Line to Ground Fault at the Inverter for Fuzzy Controller
Figure4.7 (c) Dc Link Current for Single Line to Ground Fault at the Inverter for FL-NN Technique.
Figure 4.8(a) Rectifier end Dc Voltage for Single Line to Ground Fault at the Inverter for Conventional Controller
Figure 4.8(b) Rectifier end Dc Voltage for Single Line to Ground Fault at the Inverter for Fuzzy Controller
Figure 4.8(c) Rectifier end Dc Voltage for Single Line to Ground Fault at the Inverter for FL-NN Technique .
Figure 4.9(a) Inverter end Dc Voltage for Single Line to Ground Fault at the Inverter for Conventional Controller
Figure 4.9(b) Inverter end Dc Voltage for Single Line to Ground Fault at the Inverter for Fuzzy Controller

Figure 4.9(c) Inverter end Dc Voltage for Single Line to Ground Fault at the Inverter for FL-NN Technique

Figure 4.10(a) Dc Link Current for Line to Line Fault at the Inverter for Conventional Controller

Figure 4.10(b) Dc Link Current for Line to Line Fault at the Inverter for Fuzzy Controller

Figure 4.10(c) Dc Link Current for Line to Line Fault at the Inverter for FL-NN Technique

Figure 4.11(a) Rectifier end Dc Voltage for Line to Line Fault at the Inverter for Conventional Controller.

Figure 4.11(b) Rectifier end Dc Voltage for Line to Line Fault at the Inverter for Fuzzy Controller.

Figure 4.11(c) Rectifier end Dc Voltage for Line to Line Fault at the Inverter for FL-NN Technique.

Figure 4.12(a) Inverter end Dc Voltage for Line to Line Fault at the Inverter for Conventional Controller.

Figure 4.12(b) Inverter end Dc Voltage for Line to Line Fault at the Inverter for Fuzzy Controller.
Figure 4.12(c) Inverter end Dc Voltage for Line to Line Fault at the Inverter for FL-NN Technique. 70
Figure 4.13(a) DC link Current for Single Line to Ground Fault at the Rectifier for Conventional Controller. 70
Figure 4.13(b) DC link Current for Single Line to Ground Fault at the Rectifier for Fuzzy Controller. 71
Figure 4.13(c) DC link Current for Single Line to Ground Fault at the Rectifier for FL-NN Technique. 71
Figure 4.14(a) Rectifier end Dc Voltage for Single Line to Ground fault at the Rectifier for Conventional Controller 72
Figure 4.14(b) Rectifier end Dc Voltage for Single Line to Ground fault at the Rectifier for fuzzy Controller. 72
Figure 4.14(c) Rectifier end Dc Voltage for Single Line to Ground fault at the Rectifier for FL-NN Technique 73
Figure 4.15(a) DC link Current for Line to Line fault at the Rectifier for Conventional Controller 73
Figure 4.15(b) DC link Current for Line to Line fault at the Rectifier For Fuzzy Controller 74
Figure 4.15(c) DC link Current for Line to Line fault at the Rectifier for FL-NN Technique 74
Figure 4.16(a) Rectifier end Dc Voltage for Line to Line fault at the Rectifier for Conventional Controller 75
Figure 4.1(b) Rectifier end Dc Voltage for Line to Line fault at the Rectifier for Fuzzy Controller 75

Figure 4.1(c) Rectifier end Dc Voltage for Line to Line fault at the Rectifier for FL-NN Technique. 76

Figure 5.1 Basic Flow Chart of Genetic Algorithm 82

Figure 5.2 Mutation Operation 84

Figure 5.3 Proposed GA Based System for Generating Training Data-Set. 85

Figure 5.4 Structure of the Neural Network used in GA-NN Technique. 89

Figure 5.5(a) Dc Link Current for Single Line to Ground Fault at the Inverter for Conventional Controller 95

Figure 5.5(b) Dc Link Current for Single Line to Ground Fault at the Inverter for Fuzzy Controller 96

Figure 5.5(c) Dc Link Current for Single Line to Ground Fault at the Inverter for GA-NN Technique. 96

Figure 5.6(a) Rectifier end Dc Voltage for Single Line to Ground Fault at the Inverter for Conventional Controller 97

Figure 5.6(b) Rectifier end Dc Voltage for Single Line to Ground Fault at the Inverter for Fuzzy Controller 97
Figure 5.6(c) Rectifier end Dc Voltage for Single Line to Ground Fault at the Inverter for GA-NN Technique . 98
Figure 5.7(a) Inverter end Dc Voltage for Single Line to Ground Fault at the Inverter for Conventional Controller 98
Figure 5.7(b) Inverter end Dc Voltage for Single Line to Ground Fault at the Inverter for Fuzzy Controller 99
Figure 5.7(c) Inverter end Dc Voltage for Single Line to Ground Fault at the Inverter for GA-NN Technique 99
Figure 5.8(a) Dc Link Current for Line to Line Fault at the Inverter for Conventional Controller 100
Figure 5.8(b) Dc Link Current for Line to Line Fault at the Inverter for Fuzzy Controller 100
Figure 5.8(c) Dc Link Current for Line to Line Fault at the Inverter for GA-NN Technique 101
Figure 5.9(a) : Rectifier end Dc Voltage for Line to Line Fault at the Inverter for Conventional Controller. 102
Figure 5.9(b) Rectifier end Dc Voltage for Line to Line Fault at the Inverter for Fuzzy Controller. 102
Figure 5.9(c) Rectifier end Dc Voltage for Line to Line Fault at the Inverter for GA-NN Technique. 103
Figure 5.10(a) Inverter end Dc Voltage for Line to Line Fault at the Inverter for Conventional Controller. 104
Figure 5.10(b) Inverter end Dc Voltage for Line to Line Fault at the Inverter for Fuzzy Controller.

Figure 5.10(c) Inverter end Dc Voltage for Line to Line Fault at the Inverter for GA-NN Technique.

Figure 5.11(a) DC link Current for Single Line to Ground Fault at the Rectifier for Conventional Controller.

Figure 5.11(b) DC link Current for Single Line to Ground Fault at the Rectifier for GA-NN Technique.

Figure 5.11(c) DC link Current for Single Line to Ground Fault at the Rectifier for Conventional Controller.

Figure 5.12(a) Rectifier end Dc Voltage Single Line to Ground fault at the Rectifier for Conventional Controller.

Figure 5.12(b) Rectifier end Dc Voltage Single Line to Ground fault at the Rectifier for Fuzzy Controller.

Figure 5.12(c) Rectifier end Dc Voltage Single Line to Ground fault at the Rectifier for GA-NN Technique.

Figure 5.13(a) DC link Current for Line to Line fault at the Rectifier for Conventional Controller.

Figure 5.13(b) DC link Current for Line to Line fault at the Rectifier for Fuzzy Controller.

Figure 5.13(c) DC link Current for Line to Line fault at the Rectifier for GA-NN Technique.
Figure 5.14(a) Rectifier end Dc Voltage for Line to Line fault at the Rectifier for Conventional Controller 110

Figure 5.14(b) Rectifier end Dc Voltage for Line to Line fault at the Rectifier for Fuzzy Controller 110

Figure 5.14(c) Rectifier end Dc Voltage for Line to Line fault at the Rectifier for GA-NN Technique 111

Figure 6.1 IEEE 24-bus RTS-96 system linked with two bipolar HVDC systems 128

Figure 6.2 Power flow through HVDC links 1 and 2 obtained from the proposed control strategy and control strategy I 129
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Contents of the Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Fuzzy Rules.</td>
<td>51</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Comparison of Fault Clearance times for Conventional, Fuzzy and Fuzzy-NN Controllers</td>
<td>77</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Parameters Used in GA-NN Technique.</td>
<td>92</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Comparison of Fault Clearance times for Conventional, Fuzzy and GA-NN Controllers</td>
<td>112</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Power Flow Criterion to Decide C_{sel}.</td>
<td>118</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Pre-Contingency Data For Generator Outputs in the Test System</td>
<td>124</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Pre-Contingency Data for Power Flows in the Test Power System.</td>
<td>125</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Pre-Contingency Data for Power Flows through HVDC Links</td>
<td>125</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>GA Parameters in Determining Control Parameters.</td>
<td>126</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Control Parameters and Optimal Power Flows.</td>
<td>127</td>
</tr>
</tbody>
</table>