LIST OF FIGURES

Fig. 1.1 Application of culturable diversity in different areas of research and development including agriculture, bioenergy, industries, ecosystem services, and development of novel therapeutics 4

Fig. 1.2 Geographical location of the study area of Alang–Sosiya and Mahuva on the Gulf of Cambay 6

Fig. 1.3 Chemical structure of PAHs 15

Fig. 2.1 Proposed pathway for microbial catabolism of polycyclic aromatic hydrocarbons 64

Fig. 2.1 (a) Genomic DNA electrophoresed on 0.8% agarose gel Lane 1-4: sediment without washes, washed with washing buffer I, washing buffer II and washing buffer III, respectively, M: Molecular weight marker [Supermix DNA ladder (Genei, Bangalore, India)], (b) PCR amplified product of 16S rRNA gene was electrophoresed on 1.2% agarose gel. Lane 1-5: positive control, washed with washing buffer I, washing buffer II and washing buffer III, respectively, M: Molecular weight marker [Supermix DNA ladder (Genei, Bangalore, India)](c) PCR amplified product of 16S rRNA gene from crude extract after purification was electrophoresed on 1.2% agarose gel, Lane 1-4: sediment without washes, washed with washing buffer I, washing buffer II and washing buffer III, respectively 52

Fig. 2.2 DGGE analysis of the metagenomic DNA from polluted sediment, denaturation gradient 30-70%. S1 (DVASD-1), S2 (DVASD2), S3 (DVASD3) S4 (DVBSD1), S5 (DVBSD2) and S6 (DVBSD3) 79

Fig. 2.3 Isolated bacterial strains having different morphological characteristics 55

Fig. 2.4 (a) Genomic DNA electrophoresed on 0.8% agarose gel Lane 1-6: Genomic DNA of isolated bacterial strains from sediment M: Molecular weight marker [Supermix DNA ladder (Genei, Bangalore, India)], (b) PCR amplified product of 16S rRNA gene was electrophoresed on 1.2% agarose gel. Lane 1-6: amplified product of 16S rRNA gene of isolated bacterial strains, M: Molecular weight marker [λ DNA/Eco RI Hind III double digest (Genei, Bangalore, India)] 56

Fig. 2.5 Restriction digestion of amplified 16SrRNA gene using HhaI, HaellII and MspI and analysis of digest product on 6 % denaturing polyacrylamide gel Lane 1-39: ARDRA banding pattern of selected bacterial strains 57

Fig. 2.6 Genus level comparison of culturable bacterial community structure from ASSBY. [Monsoon Season (Alang, DVASD_J and Sosiya, DVBSD_J), winter Season (Alang, DVASD_D and Sosiya, DVBSD_D), Summer Season of ASSBY (Alang, DVASD_M and Sosiya, DVBSD_M) and pristine sediment (DVPSD)] 57

Fig. 2.7 (a) Genomic DNA electrophoresed on 0.8% agarose gel Lane 1-6: Genomic DNA of isolated bacterial strains from sediment M: Molecular weight marker [Supermix DNA ladder (Genei, Bangalore, India)], (b) PCR amplified product of 16S rRNA gene was electrophoresed on 1.2% agarose gel. Lane 1-6: amplified product of 16S rRNA gene of isolated bacterial strains, M: Molecular weight marker [λ DNA/Eco RI Hind III double digest (Genei, Bangalore, India)] 58

Fig. 2.8 Isolated plasmid electrophoresed on 1% agarose gel. Lane 1-12: isolated plasmid M: the molecular size marker supermix DNA ladder Fig. (B) PCR amplified product electrophoresed on 1.2% agarose gel. Lane 1-3: PCR amplified products of 16S r-RNA gene (~ 1.5 Kb) from recombinant plasmid using M13 primer Lane M: molecular weight marker (supermix DNA ladder) 59
Fig. 2.9 (a) Phylum level comparison of bacterial community structure from coastal sediment of ASSBY (b) Class level comparison of bacterial community structure from coastal sediment of ASSBY (c) order level comparison of bacterial community structure from coastal sediment of ASSBY (d) Genus level comparison of bacterial community structure from coastal sediment of ASSBY [Monsoon Season (Alang, DVASD_J and Sosiya, DVBSD_J), winter (Alang, DVASD_D and Sosiya, DVBSD_D), Summer (Alang, DVASD_M and Sosiya, DVBSD_M) and pristine sediment (DVPSD)]

Fig. 2.10 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVASD_J (Monsoon season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates JukeseCantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II)

Fig. 2.11 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVBSD_J (Monsoon season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates JukeseCantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II)

Fig. 2.12 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVASD_D (winter season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates JukeseCantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II)

Fig. 2.13 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVBSD_D (Winter season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates JukeseCantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II)

Fig. 2.14 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVASD_M (Summer season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates JukeseCantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II)
Fig. 2.15 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVBSD_M (Summer season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates JukeseCantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II).

Fig. 2.16 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVPSD (Pristine). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates JukeseCantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II).

Fig. 2.17 Phylogenetic tree and taxonomic assignment of the dominant genera (comprising 70% of the total 2450 clones) among the seven bacterial clone libraries. The tree topology was based on maximum-parsimony. The percentages of the abundance of these dominant genera in each libraries are shown in a different color (the percentages close to 50% are indicated in light yellow, and those close to zero in dark orange). The actual percentages of A and B are 54% and 44%, respectively.

Fig. 2.18 (a) Rarefraction curves of gene clone libraries from winter sediments sample and pristine sample (b) Rarefaction curves of gene clone libraries from summer sediments sample and pristine sample (c) Rarefaction curves of gene clone libraries from winter sediments sample and pristine sediment sample. Rarefaction curve were calculated using DOTUR with 320 clones for each sample 0.03 distance OTUs.

Fig. 2.19 Principal Co-ordinates analysis (PCoA) of (a) Alang sediment samples (DVASD_J, DVASD_D and DVASD_M) and pristine sediment (DVPSD) (b) Sosiya sediment samples (DVBSD_J, DVBSD_D and DVBSD_M) and pristine sediment samples (DVPSD) using Unifrac software. The percentages in the axis labels represent the percentage of variation explained by the principal coordinates. Each axis indicates the fraction of the variance in the data that the axis accounts.

Fig. 2.20 (a) Venn diagram showing the comparison OTUs from all libraries of Alang [(monsoon (DVASD_J), winter (DVASD_D) and summer (DVASD_M)] and pristine sediment (b) Venn diagram showing the comparisons of OTUs from all libraries of Sosiya Alang [(monsoon (DVBSD_J), winter (DVBSD_D) and summer (DVBSD_M)] and pristine sediment, at 97% similarity. The size of the spheres is not consistent with the amount of phylotypes present. The numbers of OTU are presented separately in each sphere represent unique OTU of each library.

Fig. 3.1 (a) Plate showing spreaded colonies of different morphology (b) Isolated bacterial strains showing distinct morphological characteristic on nutrient media.

Fig. 3.2 (a) Genomic DNA electrophoresed on 0.8% agarose gel Lane 1-6: Genomic DNA of isolated bacterial strains from coastal water M: Molecular weight marker [Supermix DNA ladder (Genei, Bangalore, India)], (b): PCR amplified product of 16S rRNA gene was electrophoresed on 1.2% agarose gel. Lane 1-8: amplified product of 16S rRNA gene of isolated bacterial strains, M: Molecular weight marker [λ DNA/Eco RI Hind III double digest (Genei, Bangalore, India)].
Restriction digestion of amplified 16SrRNA gene using *HhaI*, *HaeIII* and *MspI* and analysis of digest product on 6% denaturing polyacrylamide gel Lane 1-39. ARDRA banding pattern of selected bacterial strains.

Genus level comparison of culturable bacterial community structure from ASSBY. [Monsoon Season (Alang, DVASW_J and Sosiya, DVBSW_J), winter Season (Alang, DVASW_D and Sosiya, DVBSW_D), Summer Season of ASSBY (Alang, DVASW_M and Sosiya, DVBSW_M) and pristine coastal water (DVPSW)].

Lane 1-39, ARDRA banding pattern of selected bacterial strains

Genus level comparison of culturable bacterial community structure from ASSBY. [Monsoon Season (Alang, DVASW_J and Sosiya, DVBSW_J), winter Season (Alang, DVASW_D and Sosiya, DVBSW_D), Summer Season of ASSBY (Alang, DVASW_M and Sosiya, DVBSW_M) and pristine coastal water (DVPSW)].

Metagenomic DNA electrophoresed on 0.8% agarose gel Lane 1-6: Metagenomic DNA from coastal water M: Molecular weight marker [Supermix DNA ladder (Genei, Bangalore, India)], (b): PCR amplified product of 16S rRNA gene was electrophoresed on 1.2% agarose gel. Lane 1-6: amplified product of 16S rRNA gene of Metagenomic DNA from coastal water, M: Molecular weight marker [λ DNA/Eco RI Hind III double digest (Genei, Bangalore, India)]

(a) Metagenomic DNA electrophoresed on 0.8% agarose gel Lane 1-6; isolated plasmid M: the molecular size marker supermix DNA ladder Fig. (b) PCR amplified product electrophoresed on 1.2% agarose gel. Lane 1-3: PCR amplified products of 16S rRNA gene (~ 1.5 Kb) from recombinant plasmid using M13 primer Lane M: molecular weight marker (supermix DNA ladder)

Phylum level comparison of bacterial community structure from coastal water of ASSBY (b) Class level comparison of bacterial community structure from coastal water of ASSBY (c) Genus level comparison of bacterial community structure from coastal water of ASSBY [Monsoon Season (Alang, DVASW_J and Sosiya, DVBSW_J), winter (Alang, DVASW_D and Sosiya, DVBSW_D), Summer (Alang, DVASW_M and Sosiya, DVBSW_M) and pristine water (DVPSW)]

Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVASW_J (Monsoon season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates Jukes-Cantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II)

Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVBSW_J (Monsoon season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates Jukes-Cantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II)

Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVASW_D (Winter season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates Jukes-Cantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II)
Fig. 3.11 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVBSW_D (winter season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates Jukes-Cantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II).

Fig. 3.12 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVBSW_M (Summer season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates Jukes-Cantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II).

Fig. 3.13 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVASW_M (summer season of ASSBY). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates Jukes-Cantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II).

Fig. 3.14 Phylogenetic trees depicting unique OTUs obtained within different bacterial phyla recovered from DVPSW (pristine). The trees were constructed based on partial sequences (1200 bp) of 16S rRNA genes retrieved 16S rRNA gene clone libraries and neighbouring RDP sequences. The trees were constructed using the neighbour-joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. Numbers at nodes indicate percent bootstrap values above 50 supported by 1000 replicates. Bar indicates Jukes-Cantor evolutionary distance. Numbers in parentheses indicate RDP-ID numbers of neighbouring sequences downloaded from the Ribosomal Database Project (RDP-II).

Fig. 3.15 Phylogenetic tree and taxonomic assignment of the dominant genera (comprising 70% of the total 2324 clones) among the seven bacterial clone libraries. The tree topology was based on maximum-parsimony. The percentages of the abundance of these dominant genera in each libraries are shown in a different color [red (lower abundance) to yellow (medium) to green (higher abundance)], [1: DVASW_J, 2: DVBSW_J, 3: DVASW_D, 4: DVBSW_D, 5: DVASW_M, 6: DVBSW_M, 7: DVPSW].

Fig. 3.16 Rarefaction curves of gene clone libraries from all seven samples.

Fig. 3.17 Rarefaction curves of gene clone libraries from all seven samples.

Fig. 4.1 Growth of all four bacterial strains of consortium DV-AL on Luria agar within 24h at 37°C.
Fig. 4.2
(a) Genomic DNA electrophoresed on 0.8% agarose gel Lane 1-4: Genomic DNA of individual strains of consortium DV-AL M: Molecular weight marker [Supermix DNA ladder (Genei, Bangalore, India)] (b) PCR amplified product of 16S rRNA gene was electrophoresed on 1.2% agarose gel. Lane 1-4: amplified product of 16S rRNA gene individual strains of consortium DV-AL, M: Molecular weight marker [λ DNA/Eco RI Hind III double digest (Genei, Bangalore, India)] (c) Denaturing polyacrylamide gel (6%) showing restriction analysis pattern of individual strains of consortium DV-AL. M: molecular weight marker of 100bp (Genei, Bangalore, India) 1: BAB238, 2: DV-AL2, 3: BAB240 and 4: BAB241

Fig. 4.3
Phylogenetic tree derived from 16S rRNA gene sequence of consortium DV-AL and sequences of closest phylogenetic neighbours obtained by NCBI BLAST (n) analysis. The NJ-tree was constructed using neighbour joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. E. coli strain U00096 has been taken as an out-group. Numbers at nodes indicate percent bootstrap values above 50 supported by more than 1000 replicates.
The bar indicates the Jukes–Cantor evolutionary distance

Fig. 4.4
Naphthalene degradation (500ppm) by individual strain of consortium DV-AL and consortium DV-AL in BHM containing 0.1% (w/v) glucose at 37°C under shaking condition at 150rpm within 24h

Fig. 4.5
(a) Effect of temperature on naphthalene degradation by consortium DV-AL in BHM supplemented with 1000ppm of phenanthrene under shaking condition at 150rpm (b) Effect of pH on naphthalene degradation by consortium DV-AL in BHM amended with 1000ppm of phenanthrene at 37°C under shaking condition at 150rpm

Fig. 4.6
Effect of carbon and nitrogen sources on naphthalene degradation by consortium DV-AL in BHM (pH 8.0) amended with 1000ppm of phenanthrene at 37°C under shaking condition at 150rpm at regular interval of 4h

Fig. 4.7
Effect of shaking condition on naphthalene degradation by consortium DV-AL in BHM (pH 8.0) amended with 1000ppm of phenanthrene at 37°C under shaking condition at regular interval of 4h

Fig. 4.8
Effect of external surfactants on naphthalene degradation by consortium DV-AL in BHM (pH 8.0) amended with 1000ppm of phenanthrene at 37°C under shaking condition at 150rpm within 12h and 24h

Fig. 4.9
Effect of initial concentration of naphthalene 256-7680ppm (2-10mM) on a specific growth rate and specific degradation rate by consortium DV-AL in optimized BHM at 37°C under shaking condition at 150rpm (b) Naphthalene degradation at higher concentration (1000-80,000 ppm) in optimized BHM at 37°C under shaking condition at 150rpm within 24h by consortium DV-AL

Fig. 4.10
Effect of other petroleum hydrocarbons (a) on naphthalene (1000ppm) degradation rate in presence of naphthalene along with other petroleum hydrocarbons, (b) Growth of consortium DV-AL in optimized BHM amended with 1000ppm of naphthalene, Naphthalene alone act as control to determine effect of petroleum hydrocarbons on naphthalene degradation

Fig. 5.1
Isolated bacterial strains (ASP 1-6) of consortium ASP on Luria agar at 37°C within 24-32h

Fig. 5.2
(a) Genomic DNA electrophoresed on 0.8% agarose gel Lane 1-6: Genomic DNA of individual strains of consortium ASP (ASP1-6) M: Molecular weight marker [Supermix DNA ladder (Genei, Bangalore, India)], (b): PCR amplified product of 16S rRNA gene was electrophoresed on 1.2% agarose gel. Lane 1-6: amplified product of 16S rRNA gene ASP-1-6, M: Molecular weight marker [λ DNA/Eco RI Hind III double digest (Genei, Bangalore, India)]

Fig. 5.3
Denaturing polyacrylamide gel (6%) showing restriction analysis pattern of individual strains of consortium ASP. Lane1-6: ASP-1-6. M: molecular weight marker of 100bp (Genei, Bangalore, India)
Fig. 5.4 Phylogenetic tree derived from 16S rRNA gene sequence of consortium ASP and sequences of closest phylogenetic neighbours obtained by NCBI BLAST (n) analysis. The NJ-tree was constructed using neighbour joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. E. coli strain U00096 has been taken as an out-group. Numbers at nodes indicate percent bootstrap values above 50 supported by more than 1000 replicates. The bar indicates the Jukes–Cantor evolutionary distance.

Fig. 5.5 (a) Effect of temperature on phenanthrene degradation by consortium ASP in BHM supplemented with 300ppm of phenanthrene under shaking condition at 150rpm, (b) Effect of temperature on growth of consortium ASP in BHM supplemented with 300ppm of phenanthrene under shaking condition at 150rpm.

Fig. 5.6 (a) Effect of pH on phenanthrene degradation by consortium ASP in BHM supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm, (b) Effect of pH on growth of consortium ASP in BHM supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm.

Fig. 5.7 (a) Effect of phenanthrene concentration on phenanthrene degradation by consortium ASP in BHM supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm, (b) Effect of phenanthrene concentration on growth of consortium ASP in BHM supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm.

Fig. 5.8 (a) Effect of surfactants on phenanthrene degradation by consortium ASP in BHM supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm within 120h, (b) Effect of different concentration of Tween 80 on phenanthrene degradation by consortium ASP in BHM supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm, (c) Effect of different concentration of Tween 80 on growth of consortium ASP in BHM supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm.

Fig. 5.9 (a) Effect of petroleum hydrocarbons on phenanthrene degradation in optimized BHM supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm, (b) Effect of petroleum hydrocarbons in presence of phenanthrene on growth of consortium ASP in optimized BHM amended with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm [control represent only phenanthrene in medium].

Fig. 5.10 Naphthalene degradation by consortium ASP in optimized BHM supplemented with 1000 ppm of naphthalene at 37°C under shaking condition at 150rpm.

Fig. 5.11 Phenanthrene degradation by consortium ASP in stimulated microcosm supplemented with 300ppm of phenanthrene at 37°C.

Fig. 6.1 Map showing the region of “The Golden Corridor” (Gujarat) (Red line)

Fig. 6.2 Phenanthrene degrading isolates having different morphological characteristics on Luria agar plates

Fig. 6.3 Morphological characteristic of Strain DMVP2 on Luria agar plate

Fig. 6.4 Phylogenetic tree derived from 16S rRNA gene sequence of *Pseudoxanthomonas* sp. DMVP2 and sequences of closest phylogenetic neighbours obtained by NCBI BLAST(n) analysis. The NJ-tree was constructed using neighbour joining algorithm with Kimura 2 parameter distances in MEGA 4.0 software. E. coli strain ATCC25922 has been taken as an out-group. Numbers at nodes indicate percent bootstrap values above 50 supported by more than 1000 replicates. The bar indicates the Jukes–Cantor evolutionary distance.

Fig. 6.5 Effect of inoculum size on phenanthrene degradation by strain DMVP2 in BHB supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm.

Fig. 6.6 Effect of carbon and nitrogen sources on phenanthrene degradation by strain DMVP2 in BHB supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm.
Fig. 6.7 Effect of temperature on phenanthrene degradation by strain DMVP2 in BHB containing 0.1% (w/v) peptone and supplemented with 300ppm of phenanthrene under shaking condition at 150rpm.

Fig. 6.8 Effect of shaking condition on phenanthrene degradation by strain DMVP2 in BHB containing 0.1% (w/v) peptone and supplemented with 300ppm of phenanthrene at 37°C.

Fig. 6.9 Effect of initial pH of BHB medium on phenanthrene degradation by strain DMVP2 in BHB containing 0.1% (w/v) peptone and supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm.

Fig. 6.10 Effect of phenanthrene concentration on phenanthrene degradation by strain DMVP2 in BHB containing 0.1% (w/v) peptone and supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150rpm.

Fig. 6.11 Effect of surfactants on phenanthrene degradation by strain DMVP2 in BHB containing 0.1% peptone and supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150 rpm.

Fig. 6.12 (a) GC-MS analysis of metabolites during phenanthrene degradation by strain DMVP2 at 0 h extract. (b) GC-MS analysis of metabolites during phenanthrene degradation by strain DMVP2 within 72 h extract. (c) GC-MS analysis of metabolites during phenanthrene degradation by strain DMVP2 within 144 h extract.

Fig. 6.13 Protocatechuate dioxygenase activity by cell free extract of strain DMVP2 grown on phenanthrene within 72h.

Fig. 6.14 Effect of petroleum hydrocarbons on (a) phenanthrene degradation and (b) growth of strain DMVP2 in BHB containing 0.1% peptone (w/v) and supplemented with 300ppm of phenanthrene at 37°C under shaking condition at 150 rpm. [Phenanthrene depict as a control: only phenanthrene in medium, whereas other petroleum hydrocarbons: Petroleum hydrocarbon added individually in medium along with phenanthrene].