GENERAL EXPERIMENTAL REMARKS

- All solvents and reagents were purified by standard techniques reported or used as supplied by commercial sources whatever appropriate.
- All recorded melting points are uncorrected.
- FT-IR spectra were recorded on Shimadzu FT-IR 8401 spectrometer using KBr disc, and are expressed in wave numbers (cm\(^{-1}\)).
- \(^1\)H NMR and \(^{13}\)C NMR spectra were recorded on a Bruker Avance 400 spectrometer operating at 400 MHz for \(^1\)H NMR, and 100 MHz for \(^{13}\)C NMR, as solutions in CDCl\(_3\), or DMSO-\(d_6\). Chemical shifts (\(\delta\)) are expressed in parts per million (ppm) and referenced to the residual protic solvent.
- In \(^1\)H NMR, \(\delta\) of dissolved water in CDCl\(_3\) and DMSO-\(d_6\) are appeared at 1.5 and 3.35 ppm respectively. Residual proton of CDCl\(_3\) appeared as a singlet at \(\delta\) 7.26 ppm where as quintet at \(\delta\) 2.49 ppm for DMSO-\(d_6\).
- \(^{13}\)C NMR chemical shift of CDCl\(_3\) and DMSO-\(d_6\) appeared at \(\delta\) 77.0 and 39.7 ppm respectively.
- Coupling constant (\(J\)) is expressed in Hertz (Hz). Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; br, broad; m, multiplet; comp, complex multiplet.
- The degree of substitution (C, CH, CH\(_2\), and CH\(_3\)) was determined by the DEPT-135 method.
- Elemental analyses (% C, H, N) were carried out on a PerkinElmer 2400 Series-II elemental analyzer.
- The ESI mass spectra were recorded on Shimadzu LCMS-2010 spectrometer.
- TLC was performed on Merck 60 F\(254\) precoated silica plates. Spots were detected either by UV (254 nm, 366 nm) or dipping into a permanganate solution [KMnO\(_4\) (3 g), K\(_2\)CO\(_3\) (20 g), NaOH (5 mL, 5% in H\(_2\)O), H\(_2\)O (300 mL)] or anisaldehyde solution [3 % methoxybenzaldehyde and 1 % H\(_2\)SO\(_4\) in methanol] or 2,4-dinitrophenyl hydrazine (2,4-DNP) solution [2,4-DNP (12 g), Conc. H\(_2\)SO\(_4\) (6 mL), Water (8 mL), EtOH (20 mL)] followed by heating.
- Single crystal X-ray data were collected on Bruker CCD area-detector diffractometer equipped with graphite monochromated MoK\(\alpha\) radiation (\(\lambda\) = 0.71073 Å). The structure was solved by direct methods using SHELXS97. All non-hydrogen atoms of the molecule were located in the best E-map. H atoms are shown as small spheres of arbitrary radii.