FIGURES

<table>
<thead>
<tr>
<th>Fig</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>HIV life cycle inside the cell after infection</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic representation of drug release from the matrix tablets</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic representation of microcapsules</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic representation showing preparation of Lamivudine matrix tablets</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Solubility of lamivudine in various pH media</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Drug release rate of lamivudine tablets 150 mg (Epivir-150 mg, Batch No-B134293, manufactured by Glaxo smithkline) in various pH media</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>FTIR spectrum of pure lamivudine</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Endothermic peak of LAMI during melting process</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>UV overlay spectra of lamivudine in different pH media initial and 24 hours</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Standard calibration curves of Lamivudine in different pH media</td>
<td>61</td>
</tr>
<tr>
<td>4.8</td>
<td>Comparative release profile of lamivudine from controlled release matrix tablets prepared using different proportions of HPMCK100M and combination of HPMC K100M & PEO. Data point represents the average of six tablets form three batches with DS with in +2.0</td>
<td>66</td>
</tr>
<tr>
<td>4.9</td>
<td>FT IR overlay Spectra of Lamivudine matrix tablets at initial and 40°C/75% RH</td>
<td>69</td>
</tr>
</tbody>
</table>
4.10 Spectrum peak points of FTIR corresponds to the functional groups of pure Lamivudine

4.11A Spectrum peak points of FTIR corresponds to the functional groups after 3 months stability at 40°C/ 75% RH of matrix tablets with HPMC and PEO

4.11B Spectrum peak points of FTIR corresponds to the functional groups after 3 months stability at 40°C/ 75% RH of matrix tablets with HPMC K 100 M

4.12 DSC thermograms of pure (1) lamivudine, (2) matrix tablets – Initial time, (3) matrix tablets at 40 0C &75 % RH- 3 Months

4.13 Cumulative percent of lamivudine released vs. time demonstrating the effect of increasing SA/Vol for FFR tablets, 11 mm diameter. (n=6).

4.14 Cumulative percent of lamivudine released vs. time demonstrating the effect of constant surface area for FFR tablets with different dimensions 8 mm and 11 mm diameter. (n=6).

4.15 Cumulative Percentage lamivudine released vs. time demonstrating the effect of constant SA/Vol for FFR tablets with different dimensions 8 mm and 11 mm diameter. (n=6).

4.16 Percent moisture uptake vs time plots of lamivudine granules and tablets

4.17 Comparative cumulative percent released vs time plot Lamivudine matrix tablets prepared with HPMC and PEO, Initial, 1, 2 and 3 months at 40°C/75% RH

4.18 Comparative cumulative percent released vs time plot Lamivudine matrix tablets prepared...
with HPMCK 100 M, Initial, 1, 2 and 3 months at 40°C/75% RH

4.19 Particle size distribution of Lamivudine microcapsules prepared with CAP

4.20 Particle size distribution of Lamivudine microcapsules prepared with CAB

4.21 Particle size distribution of Lamivudine microcapsules prepared with EC

4.22 Particle size distribution of Lamivudine microcapsules prepared with HPMCP

4.23 Particle size distribution of Lamivudine microcapsules prepared with combination of CAP and CAB

4.24 FTIR Spectra of pure (A) Lamivudine, (B) CAP microcapsules (C) CAB microcapsules (D) EC microcapsule (E) HPMCP microcapsule and (F) combination of CAP: CAB.

4.25 DSC thermo grams (1) Lamivudine, (2) CAP microcapsules (3) CAB microcapsules (4) EC microcapsule (5) HPMCP microcapsule and (6) combination of CAP: CAB

4.26 SEM micrographs of Lamivudine microcapsules prepared with (A) CAP microcapsules (B) CAB microcapsules (C) EC microcapsule (D) HPMCP microcapsule and (E) combination of CAP:CAB

4.27 SEM surface micrographs of Lamivudine microcapsules prepared with CAP

4.28 SEM surface micrographs of Lamivudine microcapsules prepared with CAB

4.29 SEM surface micrographs of Lamivudine microcapsules prepared with EC
4.30 SEM surface micrographs of Lamivudine microcapsules prepared with HPMCP

4.31 SEM surface micrographs of Lamivudine microcapsules prepared with combination of CAP and CAB

4.32 Plots (A) Cumulative % released vs time (A-1) Log % remaining vs. time (A-2) Cumulative % release vs. square root of time (Higuchi) of Lamivudine microcapsules prepared with CAP

4.33 Plots (B) Cumulative % released vs time (B-1) Log % remaining vs time (B-2) Cumulative % release vs square root of time (Higuchi) of Lamivudine microcapsules prepared with CAB

4.34 Plots (C) Cumulative % released vs time (C-1) Log % remaining vs time (C-2) Cumulative % release vs square root of time (Higuchi) of Lamivudine microcapsules prepared with EC

4.35 Plots (D) Cumulative % released vs time (D-1) Log % remaining vs time (D-2) Cumulative % release vs square root of time (Higuchi) of Lamivudine microcapsules prepared with HPMCP

4.36 Plots (E) Cumulative % released vs time (E-1) Log % remaining vs time (E-2) Cumulative % release vs square root of time (Higuchi) of Lamivudine microcapsules prepared with combination of CAP and CAB

5.1 Histogram representing solubility of Zidovudine in various pH media

5.2 Cumulative percent of drug released vs time (min) plots of zidovudine tablets 300 mg (Retrovir-300 mg, Batch No-3ZP1962, manufacture by Glaxo Smithkline) in various pH media
5.3 FTIR spectrum of pure zidovudine

5.4 Endothermic peak of ZIDO during melting process

5.5 Overlay spectra of zidovudine in different pH media initial and 24 hours

5.6 Standard calibration curves of Zidovudine in pH 6.8 phosphate buffer.

5.7 Cross section of tablet showing formation gelling layer with during dissolution

5.8 Swelling of Zidovudine during dissolution at different time intervals

5.9 Cumulative percent release of Zidovudine from different formulation (HPMC K 100M)

5.10 Higuchi plots of Zidovudine matrix tablets (HPMC K 100M)

5.11 Log percent remaining vs time plot of Zidovudine matrix tablets (HPMC K 100M)

5.12 Photograph showing the lump formation during granulation of Zidovudine- Carbopol with water.

5.13 Histogram showing particle size distribution of Zidovudine with PEO and water granulation

5.14 Histogram showing particle size distribution of Zidovudine with PEO and IPA granulation

5.15 Histogram showing particle size distribution of Zidovudine with Eudragit L100 and water granulation

5.16 Histogram showing particle size distribution of Zidovudine with Eudragit L100 and IPA
granulation

5.17 Histogram showing particle size distribution of Zidovudine with Carbopol and IPA granulation

5.18 Photomicrograph showing granule of Zidovudine with PEO and water granulation (40 X resolution)

5.19 Photomicrograph showing granule of Zidovudine with PEO and water granulation (10 X resolution)

5.20 Photomicrograph showing granule of Zidovudine with PEO and IPA granulation (40 X resolution)

5.21 Photomicrograph showing granule of Zidovudine with PEO and IPA granulation (10 X resolution)

5.22 Photomicrograph showing granule of Zidovudine with Eudragit and Water granulation (40 X resolution)

5.23 Photomicrograph showing granule of Zidovudine with Eudragit and Water granulation (10 X resolution)

5.24 Photomicrograph showing granule of Zidovudine with Eudragit and IPA granulation (40 X resolution)

5.25 Photomicrograph showing granule of Zidovudine with Eudragit and IPA granulation (10 X resolution)

5.26 Photomicrograph showing granule of Zidovudine with Carbopol and IPA granulation (40 X resolution)

5.27 Photomicrograph showing granule of Zidovudine with Carbopol and IPA granulation
(A) Cumulative percent drug released vs time
(B) Log percent remaining vs time
(C) Cumulative percent released vs square root of time (HIGUCHI) plots of Zidovudine-PEO matrix tablets with different granulation fluids.

5.29 Cumulative percent released vs time plot of Zidovudine with carbopol

5.30 Log percent remaining vs time plot of Zidovudine with carbopol

5.31 Cumulative percent released vs square root of time plot of Zidovudine with Carbopol (HIGUCHI)

5.32 Cumulative percent released vs time plot of Zidovudine prepared with Eudragit L100

5.33 Log percent remaining vs time plot of Zidovudine prepared with Eudragit L100

5.34 Cumulative percent released vs square root of time plot of Zidovudine prepared with Eudragit L100 (HIGUCHI)

5.35 DSC thermo grams of (A) Pure Zidovudine (B) Zidovudine HPMC K 100 M matrix tablets- Initial time

5.36 DSC thermo grams of (C) Zidovudine HPMC K 100 M matrix tablets- 40°C/75 % RH- 1 Month (D) Zidovudine HPMC K 100 M matrix tablets- 40°C/75 % RH- 3 Months

5.37 FTIR spectrum peak points of Zidovudine HPMC matrix tablets- Initial, Zidovudine matrix tablets 40°C/75 % RH- 1 Month , Zidovudine HPMC K 100 M matrix tablets- 40°C/75 % RH-3 months
FTIR spectrum peak points of Zidovudine-PEO matrix tablets with water granulation, Zidovudine-PEO matrix tablets with IPA granulation, Zidovudine-Carbopol matrix tablets with IPA granulation, Zidovudine-Eudragit L100 matrix tablets with water granulation, Zidovudine-EudragitL100 matrix tablets with IPA granulation

Particle size distributions of Zidovudine microcapsules with Eudragit RL 100

Particle size distributions of Zidovudine microcapsules with Eudragit RS 100

FTIR spectrum peak points of Zidovudine microcapsules with Eudragit RL 100 and Eudragit RS 100

DSC thermo grams showing melting process of Zidovudine microcapsules with Eudragit RL 100 and Eudragit RS 100

Microscopic photograph showing Zidovudine microcapsules with Eudragit RL 100

Microscopic photograph showing Zidovudine microcapsules with Eudragit RS 100

Cumulative Percent released vs time plot of Zidovudine microcapsules Eudragit RL 100

Cumulative Percent released vs time plot of Zidovudine microcapsules Eudragit RS 100

Log percent remaining vs time plot of Zidovudine microcapsules with Eudragit RS 100

Log percent remaining vs time plot of Zidovudine microcapsules with Eudragit RL 100
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.49</td>
<td>Cumulative Percent released vs square root of time plot (HIGUCHI) of Zidovudine microcapsules Eudragit RL 100</td>
</tr>
<tr>
<td>5.50</td>
<td>Cumulative Percent released vs square root of time plot (HIGUCHI) of Zidovudine microcapsules Eudragit RS 100</td>
</tr>
<tr>
<td>6.1</td>
<td>Graphical representation of Stavudine solubility in various pH media</td>
</tr>
<tr>
<td>6.2</td>
<td>Drug release rate of stavudine capsules 30 mg in various pH media</td>
</tr>
<tr>
<td>6.3</td>
<td>Endothermic peak of STAV during melting process</td>
</tr>
<tr>
<td>6.4</td>
<td>FTIR spectrum of pure Stavudine</td>
</tr>
<tr>
<td>6.5</td>
<td>Overlay spectra of Stavudine in different pH media initial and 24 hours</td>
</tr>
<tr>
<td>6.6</td>
<td>Standard calibration curves of Stavudine in different pH media</td>
</tr>
<tr>
<td>6.7</td>
<td>Cumulative percent release of stavudine matrix tablets prepared for compression coated tablets</td>
</tr>
<tr>
<td>6.8</td>
<td>Photograph of compression coated tablets of stavudine</td>
</tr>
<tr>
<td>6.9</td>
<td>Photograph showing cross-section compression coated tablets of stavudine</td>
</tr>
<tr>
<td>6.10</td>
<td>Cumulative percent released vs time plot of stavudine compression coated tablets</td>
</tr>
<tr>
<td>6.11</td>
<td>Bi layer matrix tablets of stavudine</td>
</tr>
<tr>
<td>6.12</td>
<td>Cumulative percent released vs time plot of stavudine bi layer matrix tablets</td>
</tr>
</tbody>
</table>
6.13 Cumulative percent released vs time plot of ER layer of stavudine bi layer matrix tablets

6.14 Immediate and extended release mini tablets of stavudine

6.15 Cumulative percent released vs time plot of stavudine extended release matrix tablets of FS-9 with FS-2 matrix tablets

6.16 Immediate extended release multiple mini tablets of stavudine

6.17 Comparative dissolution profiles of extended release matrix tablets of FS-11, FS-9 with FS-2 matrix tablets

6.18 FTIR spectra of stavudine extended release tablets

6.19 DSC thermogram of stavudine extended release tablets

6.20 FT IR Spectra of (A) Pure stavudine, (B) CAB microcapsules), (C) EC microcapsules, (D) HPMC microcapsule

6.21 DSC thermograms of Pure stavudine and stavudine microcapsules with different polymers (1) Pure stavudine (2) CAB , (3) EC and (4) HPMC .

6.22 SEM photographs of (A) Stavudine-Ethyl Cellulose microcapsules (B) Satavudine-Cellulose acetate butyrate microcapsule (C) Stavudine-Hydroxy propyl methyl cellulose phthalate microcapsules

6.23 Cumulative percent of stavudine released from microcapsules prepared with CAB

6.24 Cumulative percent of stavudine released from
microcapsules prepared with EC

Cumulative percent of stavudine released from microcapsules prepared with HPMCP

Log percent remaining vs time plot of stavudine microcapsules prepared with CAB

Log percent remaining vs time plot of stavudine microcapsules prepared with EC

Log percent remaining vs time plot of stavudine microcapsules prepared with HPMCP

Higuchi plot of stavudine microcapsules prepared with CAB

Higuchi plot of stavudine microcapsules prepared with EC

Higuchi plot of stavudine microcapsules prepared with HPMCP

Standard calibration curve of Lamivudine in rabbit plasma

HPLC chromatogram of standard Lamivudine

HPLC chromatogram of Lamivudine test sample

Comparative plasma profiles of Lamivudine 100 mg conventional formulation (R)

Comparative plasma profiles of Lamivudine 100 mg extended release formulation (T)

Comparative plasma profiles of Lamivudine 100 mg conventional formulation (R) with Lamivudine 100 mg extended release formulation (T)