CONTENTS

CHAPTER – 1

Introduction
1.1 Introduction to Infection and disease 2
1.2 Introduction to controlled drug delivery systems 3
 1.2.1 Classification of controlled drug delivery systems 5
1.3 Introduction to HIV and AIDS 5
 1.3.1 Drawbacks of conventional anti retroviral drugs 9
 1.3.2 Need for controlled drug delivery of retroviral drugs 11
1.4 Literature review on drugs used in the present study 13
 1.4.1 Literature review of Lamivudine 13
 1.4.2 Literature review of Zidovudine 13
 1.4.3 Literature review of Stavudine 14
1.5 Literature review on polymers used in the present study 14
1.6 Literature review on the analytical methods 17

CHAPTER -2

Drug and polymer profiles
2.1 Drug profiles 19
 2.1.1 Drug profile of Lamivudine 19
 2.1.2 Drug profile of Zidovudine 21
2.1.3 Drug profile of Stavudine 23

2.2 Polymer profiles 25

2.2.1 Polymer profiles of cellulose acetate phthalate (CAP) 25

2.2.2 Polymer profiles of cellulose acetate butyrate (CAB) 26

2.2.3 Polymer profiles of ethyl cellulose (EC) 27

2.2.4 Polymer profiles of poly ethylene oxide (PEO) 28

2.2.5 Polymer profiles of Eudragit RL 100 and Eudragit RS 100 29

2.2.6 Polymer profiles of Hydroxy propyl methyl cellulose (HPMC) 30

2.2.7 Polymer profiles of Hydroxy propyl methyl cellulose phthalate (HPMCP) 31

2.2.8 Carbopol 971 P 32

2.3 Detailed Plan of research work 33

2.4 Single unit matrix systems 33

2.4.1 Preformulation studies 33

2.4.2 Drug recovery from the matrix tablets 34

2.4.2 Investigation of Formulation Parameters 34

2.4.4 Formulation and characterization 34

2.4.5 Drug excipient interaction study 34

2.4.6 In vivo clinical studies 34

2.5 Microcapsules 35

2.5.1 Formulation and characterization 35

CHAPTER -3

Materials and methods

3.1 Materials 37

3.1.1 Drugs used in the present study 37
3.1.2 Excipients and chemical used in the study 37
3.1.3 List of Equipments used in the study 38

3.2 Dosage forms selected in the present study
3.2.1 Single unit systems (Matrix tablets) 39
3.2.2 Microparticles 40

3.3 General methods in the preparation and characterization of matrix tablets and microcapsules
3.3.1 Direct compression for matrix tablets 41
3.3.2 Wet granulation for matrix tablets 41
3.3.3 Preparation of microcapsules 42
3.3.4 Solubility determination of pure drug 43
3.3.5 Construction of standard calibration curve 43
3.3.6 FTIR measurement 44
3.3.7 DSC study 44
3.3.8 Drug content estimation 44
3.3.9 Hardness, Weight variation and Friability determination 45
3.3.10 In vitro drug release studies 45
3.3.11 Accelerated stability studies 45
3.3.12 Kinetic analysis of dissolution data 46
3.3.13 Statistical comparison of dissolution profiles 46
3.3.14 Encapsulation efficiency for microcapsules 47
3.3.15 PSD determination 48
3.3.16 Scanning electron microscopic study (SEM) 48

CHAPTER -4

Lamivudine matrix tablets

4.1 Preformulation studies 50
4.1.1 Determination of lamivudine solubility 50
4.1.2 Construction standard calibration curve 50
4.1.3 Multimedia dissolution of lamivudine conventional formulation 50
4.1.4 FTIR study 50
4.1.5 DSC study 51
4.1.6 Analytical methods

4.2 Formulation of lamivudine matrix tablets
 4.2.1 Characterization of the designed tablets
 4.2.2 Moisture uptake study of granules and tablets
 4.2.3 In vitro drug release studies
 4.2.4 Effect of tablet SA and SA/Vol on drug release from HPMC matrix tablets
 4.2.5 Accelerated stability studies
 4.2.6 Statistical comparison of dissolution profiles

4.3 Results and discussion
 4.3.1 Construction of standard calibration curve
 4.3.2 Lamivudine solubility determination
 4.3.3 Multimedia dissolution of lamivudine conventional formulations
 4.3.4 FTIR studies of pure lamivudine
 4.3.5 DSC studies of pure lamivudine
 4.3.6 Analytical methods
 4.3.7 Lamivudine matrix tablets
 4.3.8 Screening of formulation for further study
 4.3.9 FTIR studies of lamivudine matrix tablets
 4.3.10 DSC studies of lamivudine matrix tablets
 4.3.11 Effect of tablet SA and SA/Vol on drug release from the matrix tablets prepared with HPMC K100 M
 4.3.12 Moisture uptake study of tablets and granules
 4.3.13 Accelerated stability studies of lamivudine tablets

Lamivudine microcapsules

4.4 Preparation of Lamivudine microcapsules

4.5 Characterization of microcapsules
 4.5.1 Encapsulation efficiency (EE)
 4.5.2 Particle size distribution (PSD)
 4.5.3 FTIR study of microcapsules
4.5.4 DSC study of microcapsules 84
4.5.5 SEM studies of microcapsules 84
4.5.6 In-vitro drug release studies 85
4.5.7 Determination of stability of microcapsules 85

4.6 Results and discussion
4.6.1 Preparation of microcapsules 86
4.6.2 Encapsulation efficiency (EE) 86
4.6.3 Particle size distribution (PSD) 86
4.6.4 FTIR study of microcapsules 91
4.6.5 DSC study of microcapsules 93
4.6.6 SEM studies of microcapsules 94
4.6.7 In vitro drug release studies 99
4.6.8 Stability of microcapsules 108

CHAPTER 5
Zidovudine matrix tablets
5.1 Pre formulation study
5.1.1 Determination Zidovudine solubility 110
5.1.2 Construction of standard calibration curve 110
5.1.3 Multimedia dissolution of marketed formulations 110
5.1.4 FTIR studies 110
5.1.5 DSC studies 110
5.1.6 Analytical methods 111

5.2 Formulation of Zidovudine matrix tablets
5.2.1 Preparation of Zidovudine granules 111
5.2.2 Characterization of granules 111
5.2.3 Characterization of tablets 113
5.2.4 In vitro drug release studies 113
5.2.5 Accelerated stability studies 113

5.3 Results and discussion
5.3.1 Standard calibration curve 115
5.3.2 Solubility study of Zidovudine 115
5.3.3 FTIR study of pure Zidovudine 118
5.3.4 DSC study of pure Zidovudine 119
5.3.5 Analytical methods 120
5.3.6 Matrix tablets prepared with HPMC K 100M 123
5.3.7 Study of polymer type and granulation fluid on drug release from zidovudine matrix tablets 129
5.3.8 Matrix tablets prepared with PEO WSR 303 130
5.3.9 Matrix tablets prepared with Carbopol 971 134
5.3.10 Matrix tablets prepared with Eudragit L100 138
5.3.11 Particle size distribution of the prepared granules 142
5.3.12 Microscopic study of the prepared granules 146
5.3.13 In vitro dissolution studies 152
5.3.14 DSC studies 161
5.3.15 FTIR studies 163

Zidovudine microcapsules

5.4 Preparation of zidovudine microcapsules 167
5.5 Characterization of microcapsules 167
5.5.1 Encapsulation efficiency (EE) 167
5.5.2 Particle size distribution (PSD) 167
5.5.3 FTIR study of microcapsules 167
5.5.4 DSC study of microcapsules 167
5.5.5 Morphological studies of microcapsules 167
5.5.6 In-vitro drug release studies 168

5.6 Results and discussion
5.6.1 Preparation of microcapsules 169
5.6.2 Encapsulation efficiency (EE) 169
5.6.3 Particle size distribution (PSD) 169
5.6.4 FTIR study of microcapsules 172
5.6.5 DSC study of microcapsules 173
5.6.6 Morphological studies of microcapsules 174
5.6.7 In-vitro drug release studies 175

CHAPTER-6

Stavudine matrix tablets

6.1 Pre formulation study
6.1.1 Solubility of stavudine
6.1.2 Construction of standard calibration curve
6.1.3 Multimedia dissolution of marketed formulations
6.1.4 FTIR study
6.1.5 DSC study
6.1.6 Analytical methods

6.2 Formulation of stavudine matrix tablets
6.2.1 Patent and publication search and assessment
6.2.2 Formulation of compression coated tablets
6.2.3 Formulation of bi layer tablets
6.2.4 Formulation of mini tablets
6.2.5 Formulation of multiple mini tablets

6.3 Characterization of matrix tablets
6.3.1 Drug content
6.3.2 Physical characterization
6.3.3 In vitro dissolution studies
6.3.4 FTIR studies
6.3.5 DSC studies

6.4 Results and discussion
6.4.1 Standard calibration curve
6.4.2 Solubility of stavudine
6.4.3 DSC study of pure stavudine
6.4.4 FTIR study of pure stavudine
6.4.5 Analytical methods
6.4.6 Compression coated stavudine formulations
6.4.7 Bi layer matrix tablets of stavudine
6.4.8 Immediate extended release mini tablets
6.4.9 Immediate extended release multiple mini tablets
6.4.10 FTIR study
6.4.11 DSC study

6.5 Preparation of Stavudine microcapsules
6.6 Characterization of Stavudine microcapsules
6.6.1 Encapsulation efficiency (EE) 218
6.6.2 Particle size distribution (PSD) 218
6.6.3 FTIR study of microcapsules 218
6.6.4 DSC study of microcapsules 218
6.6.5 SEM studies of microcapsules 218
6.6.6 In-vitro drug release studies 219
6.6.7 Accelerated stability study 219

6.7 Results and discussion
6.7.1 Preparation of microcapsules 220
6.7.2 Particle size distribution (PSD) 220
6.7.3 Encapsulation efficiency (EE) 220
6.7.4 Accelerated stability study 221
6.7.5 FTIR study of microcapsules 222
6.7.6 DSC study of microcapsules 223
6.7.7 SEM studies of microcapsules 224
6.7.8 In-vitro drug release studies 225

CHAPTER-7
In vivo clinical study of Lamivudine matrix tablets

7.1 In vivo evaluation of lamivudine matrix tablets 233
7.2 Bioavailability study protocol 234
7.2.1 Study objective 234
7.2.2 Study protocol 234
7.3 Standard calibration curve by HPLC 235
7.4 In vivo study and clinical analysis of blood samples
7.4.1 Blood sampling 238
7.4.2 Analytical method and instrumentation 238
7.4.3 Chromatographic conditions 238
7.4.4 Extraction procedure of Lamivudine 239
7.5 Results and discussion 246
7.5.1 Pharmacokinetic assessment 246

CHAPTER-8
Summary and conclusions
8.1 Lamivudine matrix tablets 249
8.2 Lamivudine microcapsules 251
8.3 Zidovudine matrix tablets 252
8.4 Zidovudine microcapsules 255
8.5 Stavudine matrix tablets 256
8.6 Stavudine microcapsules 258
8.7 In vivo clinical study of Lamivudine matrix tablets 259
8.8 Conclusions 259
8.9 Future prospective 260
8.10 On going research 260

REFERENCES 261