LIST OF TABLES

Table 2.1 GPS, GLONASS and GALILEO carrier frequencies 25
Table 3.1 Navigation data format 57
Table 3.2 Observation data format 63
Table 4.1 User position after smoothening over an hour and the error in user position due to the RLS method 93
Table 4.2 User position after smoothening over an hour and the error in user position due to the JMR method 94
Table 4.3 User position after smoothening over an hour and the error in user position due to the proposed MAP method 95
Table 4.4 Comparison of the position error (m) performance of all the three methods 96
Table 5.1 Different atomic clock standards 100
Table 5.2 SV PRN numbers with corresponding Satellite clock bias, clock drift, clock drift rate and pseudorange observed on L1 (1575.42MHz) due to C/A code 112
Table 5.3 SV PRN numbers with corresponding Satellite clock bias, clock drift, clock drift rate and pseudorange observed on L2 (1227.6MHz) due to P code 112
Table 5.4 The user position and the error in user position before and
after satellite clock error correction is applied to pseudoranges

Table 5.5 The analysis of different parameters corresponding to
SV PRN 31

Table 6.1 DOP ratings

Table 6.2 Various DOP values estimated due to all the three methods
with all in view satellites corresponding to 19th February, 2010

Table 6.3 Various DOP values estimated due to all the three methods
with all in view satellites corresponding to 20th February, 2010

Table 6.4 Various DOP values estimated due to all the three methods
with all in view satellites corresponding to 21st February, 2010

Table 6.5 Various DOP values estimated due to all the three methods
with Best – 4 satellites corresponding to 19th February, 2010

Table 6.6 Various DOP values estimated due to all the three methods with
Best – 4 satellites corresponding to 20th February, 2010

Table 6.7 Various DOP values estimated due to all the three methods
with Best – 4 satellites corresponding to 21st February, 2010

Table 7.1 User position, Receiver clock error and GDOP for 25 epochs
due to the RLS method corresponding to 19th February, 2010

Table 7.2 User position, Receiver clock error and GDOP for 25 epochs
due to the JMR method corresponding to 19th February, 2010

Table 7.3 User position, Receiver clock error and GDOP for 25 epochs
due to the MAP method corresponding to 19th February, 2010

Table 7.4 User position errors for 25 epochs due to all the three methods
corresponding to 19th February, 2010

Table 7.5 User position, Receiver clock error and GDOP for 25 epochs due to the RLS method corresponding to 20th February, 2010

Table 7.6 User position, Receiver clock error and GDOP for 25 epochs due to the JMR method corresponding to 20th February, 2010

Table 7.7 User position, Receiver clock error and GDOP for 25 epochs due to the MAP method corresponding to 20th February, 2010

Table 7.8 User position errors for 25 epochs due to all the three methods corresponding to 20th February, 2010

Table 7.9 User position, Receiver clock error and GDOP for 25 epochs due to the RLS method corresponding to 21st February, 2010

Table 7.10 User position, Receiver clock error and GDOP for 25 epochs due to the JMR method corresponding to 21st February, 2010

Table 7.11 User position, Receiver clock error and GDOP for 25 epochs due to the MAP method corresponding to 21st February, 2010

Table 7.12 User position errors for 25 epochs due to all the three methods corresponding to 21st February, 2010

Table 7.13 2D Position Accuracy Measures

Table 7.14 3D Position Accuracy Measures

Table 7.15 GPS time versus DRMS and 2DRMS values estimated due to all the three methods corresponding to 19th February, 2010

Table 7.16 GPS time versus CEP and R95 values estimated due to all the three methods corresponding to 19th February, 2010
Table 7.17 GPS time versus SEP and MRSE values estimated due to all the three methods corresponding to 19th February, 2010

Table 7.18 GPS time versus 90\% Spherical Accuracy and 99\% Spherical Accuracy values estimated due to all the three methods corresponding to 19th February, 2010

Table 7.19 Various estimated position accuracy measures corresponding to 19th February, 2010

Table 7.20 Various estimated position accuracy measures corresponding to 20th February, 2010

Table 7.21 Various estimated position accuracy measures corresponding to 21st February, 2010

Table 7.22 Various Estimated Position Accuracy Measures

Table B.1 Ephemeris Parameters

Table C.1 User position, Receiver clock error and GDOP after smoothening over an hour due to the RLS method corresponding to 19th February, 2010

Table C.2 User position, Receiver clock error and GDOP after smoothening over an hour due to the JMR method corresponding to 19th February, 2010

Table C.3 User position, Receiver clock error and GDOP after smoothening over an hour due to the MAP method corresponding to 19th February, 2010

Table C.4 User position errors after smoothening over an hour due to
all the three methods corresponding to 19th February, 2010
Table C.5 User position, Receiver clock error and GDOP after smoothening over an hour due to the RLS method corresponding to 20th February, 2010
Table C.6 User position, Receiver clock error and GDOP after smoothening over an hour due to the JMR method corresponding to 20th February, 2010
Table C.7 User position, Receiver clock error and GDOP after smoothening over an hour due to the MAP method corresponding to 20th February, 2010
Table C.8 User position errors after smoothening over an hour due to all the three methods corresponding to 20th February, 2010
Table C.9 User position, Receiver clock error and GDOP after smoothening over an hour due to the RLS method corresponding to 21st February, 2010
Table C.10 User position, Receiver clock error and GDOP after smoothening over an hour due to the JMR method corresponding to 21st February, 2010
Table C.11 User position, Receiver clock error and GDOP after smoothening over an hour due to the MAP method corresponding to 21st February, 2010
Table C.12 User position errors after smoothening over an hour due to all the three methods corresponding to 21st February, 2010