CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xviii</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xxiii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction | 01 |
1.2 Objectives of the thesis | 04 |
1.3 Literature survey | 06 |
1.4 Technical approach | 09 |
1.5 Applications of the thesis | 15 |
1.6 Organization of the thesis | 16 |

CHAPTER 2 VARIOUS NAVIGATIONAL AIDS FOR AVIATION

2.1 Introduction | 18 |
2.2 Modern ground based navigation systems | 18 |
 2.2.1 Very High Frequency Omnidirectional Range | 19 |
 2.2.2 Instrument Landing System | 19 |
 2.2.3 Microwave Landing System | 19 |
 2.2.4 Long Range Navigation | 20 |
 2.2.5 OMEGA | 20 |
 2.2.6 Dedicated Englishmen Causing Chaos Abroad | 20 |
 2.2.7 Non-Directional Beacon | 21 |
2.3 Modern satellite based navigation systems

2.3.1 TRANSIT
2.3.2 GPS
2.3.3 GLONASS
2.3.4 GALILEO

2.4 Global navigation satellite system - GPS

2.5 GPS architecture

2.5.1 Space segment
2.5.2 Control segment
2.5.3 User segment

2.6 GPS performance requirements

2.6.1 Basic GPS concept
2.6.2 Basic equations for finding user position
2.6.3 GPS signal structure
2.6.4 GPS signal components
2.6.5 Desired GPS navigation signal properties
2.6.6 GPS Signal Characteristics

2.7 Conclusions

CHAPTER 3 GPS RECEIVER SIGNAL PROCESSING

3.1 Introduction

3.2 GPS receiver

3.3 Data formats

3.3.1 Navigation message format
3.3.2 The Navigation data format 57
3.3.3 Observation data format 63
3.4 Conclusions 65

CHAPTER 4 DEVELOPMENT OF NAVIGATION SOLUTION ALGORITHMS
4.1 Introduction 66
4.2 Receiver position estimation algorithms 67
 4.2.1 Navigation solution with four satellites 69
 4.2.2 Recursive least squares approximation algorithm 72
 4.2.3 Navigation solution with more than four satellites 73
 4.2.4 Jacobian determinant based Multipolynomial resultant technique
 4.2.4.1 Multipolynomial resultant approach 76
 4.2.5 Minkowski function based absolute position algorithm 81
4.3 Results 83
4.4 Conclusions 96

CHAPTER 5 ANALYSIS OF SATELLITE CLOCK BIAS, CLOCK DRIFT AND RELATIVISTIC ERROR EFFECT ON THE PSEUDORANGE AND NAVIGATION SOLUTION
5.1 Introduction 97
5.2 GPS errors 98
 5.2.1 GPS satellite clocks and time 99
 5.2.2 Satellite clock error 101
 5.2.3 Relativistic effects 103
CHAPTER 6 SATELLITE-RECEIVER GEOMETRY CONFIGURATION ANALYSIS OVER THE INDIAN SUBCONTINENT

6.1 Introduction 115
6.2 Satellite-receiver geometry effect on the navigation solution
 6.2.1 Various forms of Dilution of Precision 119
 6.2.2 Dilution of Precision estimation algorithm 123
6.3 Best satellite-receiver geometry configuration analysis 126
 6.3.1 DOPs due to ‘Best -4’ satellite-receiver geometry configuration 126
 6.3.2 DOPs due to ‘All-in-view’ satellite-receiver geometry configuration 127
6.4 Results of GDOP analysis due to three navigation solutions 128
6.5 Conclusions 139

CHAPTER 7 RESULTS AND DISCUSSION OF STATISTICAL ERROR ANALYSIS FOR PROPOSED NAVIGATION SOLUTIONS

7.1 Introduction 141
7.2 Frequency distribution of GPS data 141
7.3 Graphical representation of data 142
 7.3.1 Normal density function 145
7.4 Experimental setup for data collection 146
7.5 Error analysis results of the three navigation solutions 148
7.6 Position error, range and receiver clock error analysis due to three navigation solutions 162
7.7 Popular accuracy measures 186
7.8 Results of 2D and 3D position accuracy measures obtained by the three navigation solutions 188
7.9 Results of Frequency distribution analysis 199

7.9.1 Frequency distribution of x, y and z position analysis corresponding to 19th February, 2010 200

7.9.2 Frequency distribution of x, y and z position analysis corresponding to 20th February, 2010 207

7.9.3 Frequency distribution of x, y and z position analysis corresponding to 21st February, 2010 214

7.9.4 Frequency distribution of x, y and z position analysis corresponding to continuous 3 days (19th to 21st February, 2010) receiver data 221

7.10 Conclusions 228

CHAPTER 8 CONCLUSIONS

8.1 Conclusions 230

8.2 Future scope of the work 234

Appendix A Coordinate transformation 235

Appendix B Satellite Position Estimation Algorithm 237

Appendix C Performance comparison of the three navigation solutions after smoothening over an hour data 242

References 256

List of Publications relevant to the Ph. D work 268