LIST OF FIGURES

Figure 1.1: Representation of [MnO$_6$] octahedron 2

Figure 1.2: Polyhedral representations of some crystal structures of manganese dioxide 4

Figure 1.3: Three different phases of layered manganese oxides: (a) the dehydrated phase, (b) birnessite phase and (c) buserite phase 6

Figure 1.4: Comparative graph of pore sizes between Tetrahedral Molecular sieves (zeolites) and Octahedral Molecular sieves (manganese dioxides) 8

Figure 1.5: A representation of a Direct Methanol Fuel Cell (DMFC) 22

Figure 1.6: Volcano Plot for different metals active for HER 23

Figure 1.7: Ru assisting Pt in the oxidation of poisonous residues (CO) 28

Figure 1.8: Possible mechanism of back bonding from filled π orbital of Pt to vacant π^* orbital in CO 29

Figure 2.1: Scheme of the synthesis of OMS-2 by KMnO$_4$ oxidation method 43

Figure 2.2: XRD profiles of; (a) S1, (b) S2, (c) S3 and (d) S4 48

Figure 2.3: Infrared spectra of; (a) S1, (b) S2, (c) S3 (d) S4 and (e) S5 51

Figure 2.4: XRD profiles of OMS-2 by reflux method (S1); Mn(II) nitrate decomposed at 200 $^\circ$C (N1); Mn(II) salt + K$_2$SO$_4$ in 1:1 ratio (N2); Mn(II) salt + Na$_2$SO$_4$ in ratio 1:1 (N3) 55

Figure 3.1: XRD profiles of pure OMS-2 sample, S and Al$^{3+}$ containing OMS-2 sample, SA 61

Figure 3.2: Infra-Red profiles of stoichiometric manganese dioxide (Pyrolusite), P; pure OMS-2 sample, S and Al$^{3+}$ - doped OMS-2, SA 64

Figure 3.3: FESEM micrograph of pure OMS-2 (S) sample 65

Figure 3.4: Scheme for the oxidation of Benzyl alcohol 68
Figure 3.5: TG/DSC profiles of stoichiometric manganese dioxide (Pyrolusite), P; pure OMS-2 sample, S and Al $^{3+}$-doped OMS-2, SA

Figure 3.6: TPD profiles of stoichiometric manganese dioxide (Pyrolusite), P; pure OMS-2 sample, S and Al $^{3+}$-doped OMS-2, SA

Figure 3.7: XRD profiles of pure OMS-2, S; 0.5% Fe modified catalyst, Sf1; 5% Fe modified catalyst, Sf2 and 15% Fe modified catalyst, Sf3

Figure 3.8: XRD profiles of pure OMS-2, S; 5% Ti modified catalyst, ST5; 10% Ti modified catalyst, ST10 and 20% Ti modified catalyst, ST20

Figure 3.9: Infra-red profiles of pure OMS-2, S; 0.5% Fe modified catalyst, Sf1; 5% Fe modified catalyst, Sf2 and 15% Fe modified catalyst, Sf3

Figure 3.10: Thermogravimetric patterns of the various Fe modified catalysts

Figure 3.11: Correlation plot of % weight loss for the temperature interval 300-570 °C v/s % Conversion

Figure 4.1: Structures of (a) α- MnO$_2$ (OMS-2) and (b) γ-MnO$_2$ (nsutite) showing intergrowth of pyrolusite and ramsdellite.

Figure 4.2: Scheme for the preparation of a manganese dioxide electrochemical cell

Figure 4.3: Experimental circuit diagram for the electrochemical reduction of manganese oxides

Figure 4.4: Discharge curves of the various MnO$_2$ samples in 9 M KOH

Figure 4.5: Discharge curves comparing half the amount of OMS-2 (50 mg) in 9 M KOH

Figure 4.6: Discharge curves of the nsutite and OMS-2 samples during Li$^+$ insertion in alkaline medium
Figure 5.1: Experimental set-up to study Tafel Relationship

Figure 5.2: Tafel plots to study effect of pyrolusite (P) on OMS-2 (S) and nsutite (IC8)

Figure 5.3: Tafel plots to study effect of RuC support on OMS-2 (S)

Figure 5.4: Tafel plots to study effect of temperature on S/RuC

Figure 5.5: Tafel plots to study effect of amount of S on RuC

Figure 5.6: Tafel plots to study effect of reduction on S/RuC

Figure 5.7: X-ray diffractograms of the various treated samples; (a) S1, (b) S300, (c) S550, (d) SH120, (e) SH300 and (f) SBH

Figure 5.8: Infra-red spectra of the treated samples; S1, S300, S550, SH120, SH300 and SBH

Figure 5.9: Cyclic Voltammograms of Pt/C catalyst in (2.5 M) H2SO4 (—) and (2.5 M) H2SO4 + (1M) methanol (—)

Figure 5.10: Cyclic Voltammograms of Pt/C catalyst at various scan rates of 10, 50 and 100 mVs⁻¹

Figure 5.11: Cyclic Voltammograms of Pt-NR + Ru-C catalyst in (2.5 M) H2SO4 (—) and (2.5 M) H2SO4 + (1M) methanol (—)

Figure 5.12: Cyclic Voltammograms of Pt-NR + S catalyst in (2.5 M) H2SO4 (—) and (2.5 M) H2SO4 + (1M) methanol (—)

Figure 5.13: Cyclic Voltammograms of OMS-2 (S) + Ru-C catalyst in (2.5 M) H2SO4 (—) and (2.5 M) H2SO4 + (1M) methanol (—)

Figure 5.14: Correlation between peak potentials obtained from cyclic voltammetry and exchange current densities from Tafel plots of various catalysts
LIST OF TABLES

Table 1.1: Synthetic procedures adopted by various workers 13
Table 1.2: Various tools used by the workers in the characterization of OMS-2 materials 14
Table 1.3: The different types of fuel cells that have been realized and currently in use 19
Table 1.4: Some common fuels and their corresponding maximum voltage and energy density 20
Table 1.5: Effect of catalyst promoters on methanol oxidation 34
Table 2.1: Synthesis of OMS-2 by chlorate method 44
Table 2.2: Simple codes for the synthesized samples 45
Table 2.3: Characteristic X-Ray diffraction data of OMS-2 46
Table 2.4: Characteristic X-Ray diffraction data of γ-MnO₂ 47
Table 2.5: Typical X-ray powder diffraction pattern of the samples. 47
Table 2.6: Synthesis of manganese oxides in relation to its crystal phase and H⁻ ion exchange capacity 54
Table 3.1: X-Ray diffraction data of the OMS-2 catalysts 62
Table 3.2: BET surface areas of the samples 66
Table 3.3: % Conversion of Benzyl alcohol over the various catalysts 67
Table 3.4: Percent weight losses of the samples in three different temperature intervals 70
Table 3.5: Catalytic activity of the Mn(IV) oxides in relation to their physicochemical characteristics 74
Table 3.6: X-ray diffraction data of Fe OMS-2 samples 76
Table 3.7: Thermogravimetric weight losses of Fe³⁺ modified manganese oxides 81
Table 3.8: Physico-chemical characteristics of various metal cation modified manganese oxides

Table 4.1: Discharge characteristics of the various manganese oxides in 9 M KOH solution

Table 5.1: Chemical reactivity of the Mn(IV) oxides in relation to their physicochemical characteristics

Table 5.2: Electrocatalytic activity of the various samples investigated expressed in terms of current produced at an arbitrarily chosen overpotential of 150 mV.

Table 5.3: Electrocatalytic activity at 60 °C of the various samples investigated expressed in terms of current produced at a chosen overpotential of 150 mV

Table 5.4: Electrocatalytic activity of the various samples investigated expressed in terms of current produced at an arbitrarily chosen overpotential of 150 mV

Table 5.5: Electrocatalytic activity of the various samples investigated expressed in terms of current produced at an arbitrarily chosen overpotential of 150 mV

Table 5.6: Samples treated in various ways and their corresponding codes

Table 5.7: Catalytic activity of OMS-2 in relation to its chemical characteristics in relation to the different treatment procedures

Table 5.8: Typical X-ray powder diffraction data of the samples

Table 5.9: BET surface areas of the treated samples

Table 5.10: Methanol oxidation peak potentials of forward scan from CV data for various catalysts at scan rate of 10 mVs⁻¹