TABLE OF CONTENTS

Declaration ... i
Certification .. ii
Abstract ... iv
Acknowledgements vii
List of Tables ... xv
List of Figures ... xvii
Abbreviations ... xx

1 Introduction ... 1
 1.1 Overview of Mobile Ad Hoc Networks (MANETs) 4
 1.2 MANET's Salient Characteristics 5
 1.3 Applications of MANETs 6
 1.4 Routing Classification in Ad Hoc Networks 8
 1.4.1 Proactive versus Reactive Approaches 9
 1.4.2 Routing Protocols Overview 11
 1.5 MANET QoS Overview .. 18
 1.5.1 QoS Metrics .. 19
 1.5.2 Quality of Service models for Internet 20
 1.5.3 Quality of Service in Ad Hoc Networks 23
 1.5.3.1 Special Issues and Difficulties in MANETs 23
 1.5.3.2 Drawbacks of the different QoS Models 24
 1.6 Organization of the thesis 26
Literature Survey

2.1 Overview ... 29

2.2 Existing QoS Technologies ... 32

2.3 Existing QoS aware routing Protocols 35

2.4 QoS routing based on route life time 39

2.5 QoS routing based on Energy .. 41

2.6 QoS routing based on multiple constraints 43

2.7 Potential Problems for Research 44

2.8 Summary ... 45

Problem Formulation

3.1 Introduction ... 47

3.2 Objectives and Scope .. 48

Routing Protocols in MANETs

4.1 Introduction ... 50

4.2 MANET Routing Protocols Classification 50

4.3 Routing Classification in Ad Hoc Networks 51

4.3.1 Destination Sequenced Distance Vector (DSDV) 51

4.3.2 Dynamic Source Routing protocol 53

4.3.3 Ad Hoc On-demand Distance Vector (AODV) 55

4.4 Performance comparison and analysis of three MANET Routing Protocols 57

4.4.1 Models used for measuring the performance 58

4.4.2 PDR vs. number of nodes ... 61

4.4.3 Delay vs. number of nodes 62

4.4.4 Throughput vs. number of nodes 62
4.4.5 Control overhead vs. number of nodes 63
4.4.6 Result of Comparison 63
4.5 Original AODV Route discovery algorithm 64
4.6 Summary .. 65

5 Computation of Multiple Node Disjoint Paths 67

5.1 Introduction 67
 5.1.1 Unipath Routing in MANETs 68
 5.1.2 Multipath Routing in MANETs 70
 5.1.3 Benefits of multipath routing 71
 5.1.4 Ad Hoc On-Demand Multipath Distance Vector Routing Protocol (AOMDV) 72
 5.1.5 Experimental Results 73
 5.1.5.1 PDR vs. number of nodes 74
 5.1.5.2 Delay vs. number of nodes 74
 5.1.5.3 Control Overhead 75
 5.1.6 Analysis of Simulation Results 75
 5.2 Establishing Path Accumulation features in AODV .. 76
 5.3 Proposed method of Multiple Node Disjoint Paths for a MANET 77
 5.4 Algorithm for computing Multiple Node Disjoint Paths by making use of Path accumulation feature in AODV routing protocol (MQARP) .. 80
 5.5 Experimental Results 82
 5.5.1 PDR vs. number of nodes 82
 5.5.2 Delay vs. number of nodes 83
 5.5.3 Control overhead 83
 5.5.4 Analysis of Simulation Results 84
 5.6 Summary .. 85
6 Design of Quality of Service Aware Routing Protocol (QARP)

6.1 Introduction .. 87
 6.1.1 Route discovery in original AODV 88
 6.1.2 Disadvantages of the route discovery process in an original AODV 90
 6.1.3 Routing protocol components 91
6.2 Modifying original AODV to avoid unnecessary flooding. 93
6.3 Algorithm to avoid unnecessary flooding using Timestamp (QoS-AODV) 95
6.4 Experimental Results 96
 6.4.1 Performance comparison of QARP and AODV 96
 6.4.1.1 Throughput vs. number of nodes 97
 6.4.1.2 Delay vs. number of nodes 97
 6.4.1.3 Routing Overhead 98
 6.4.1.3 Analysis of Simulation Results 98
 6.4.2 Performance comparison of QARP and AODV-D 99
 6.4.2.1 PDR vs. Pause time 99
 6.4.2.2 Delay vs. Pause time 100
 6.4.2.3 Analysis of Simulation Results 100
6.5 Summary .. 101

7 Design of Enhanced Quality of Service Aware Routing Protocol (EQARP)

7.1 Introduction .. 102
7.2 Life time in an original AODV 103
7.3 Computation of Route Life time ratio based on static Lifetime and TTL 104
 7.3.1 Experimental Results 106
 7.3.1.1 PDR vs. number of nodes 106
7.3.1.2 Delay vs. number of nodes 107
7.3.2 Analysis of Simulation Results 107

7.4 Link life time based on Position and Direction of Movement. 108
 7.4.1 Calculation of Link Life time (LLT) 109
 7.4.2 Calculation of Route life time (RLT) based on Position and direction of movement. 111

7.5 Algorithm for Route discovery process in EQARP 112
7.6 Flowchart for Route discovery in EQARP 114
7.7 Modeling the network and simulation parameters ... 116
 7.7.1 Experimental Results. 116
 7.7.1.1 PDR vs. no. of nodes at high mobility. 116
 7.7.1.2 Delay vs. no. of nodes at high mobility 117
 7.7.2 Analysis of Simulation Results 118

7.8 Summary.. 118

8 Improvement of Network Lifetime 119
 8.1 Introduction. ... 119
 8.2 Life time in an original AODV. 120
 8.3 Modifying the routing protocol by computing energy across the node during route discovery. 120
 8.4 Algorithm to make the efficient usage of energy (EARP). 122
 8.5 Modeling the network and simulation parameters. 124
 8.5.1 Energy model in NS-2. 124
 8.5.2 Experimental Results 125
 8.5.2.1 Performance comparison of EARP and AODV 126
 8.5.2.2 Performance comparison of EARP and PA-AODV 127
9 Mulitpath QoS Routing in MANETs taking multiple constraints

9.1 Introduction .. 131
9.2 Using multiple constraints while path finding 132
9.3 Route Discovery in MMQARP .. 134
9.4 Route Selection .. 136
9.5 Algorithm for Route discovery process in MMQARP by
dynamically computing average time stamp, link life
time and energy .. 140
9.6 Modeling the network and simulation parameters 142
9.6.1 Experimental Results ... 143
 9.6.1.1 Performance comparison of MMQARP
 and AOMDV ... 143
 9.6.1.2 Performance comparison of MMQARP
 and EEMLSL ... 146
9.6.2 Route establishment time 148
9.7 Summary .. 149

10 Conclusion and Future Directions 150
10.1 Major Contributions made 151
10.2 Suggestions for future research 153

Contributions .. 155

References ... 157