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CHAPTER  4 

 

IMPLEMENTATION OF OBSERVER DESIGN TO CSTRs 
 

 

4.1 INTRODUCTION 

 

 FKF, EKF and ASFKF designs discussed in chapter 3 are used in 

this chapter to estimate the states of CSTRs. The performance of FKF and 

EKF are compared. 

 

4.2      PROCESS DESCRIPTION 

4.2.1 Continuous Stirred Tank Reactor (CSTR- I) 

  

 The first principles model of the CSTR-I system and the operating 

point data (Refer Table 4.1) as specified in the paper titled Fuzzy Model 

Predictive Control by Huang et al (2000) have been used in the simulation 

studies. Highly nonlinear CSTR process is very common in chemical and 

petrochemical plants. In the process considered for simulation study as shown 

in Figure 4.1, an irreversible, exothermic reaction A  B occurs in constant 

volume reactor that is cooled by a single coolant stream. The CSTR-I process 

is modeled by the following equations: 

 

  A
AO A O A

dC (t) q(t) EC (t) C (t) K C (t)exp
dt V RT(t)

 
    

 
                   (4.1) 
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c pc0 A
O c

p p

co
c p

C( H)K C (t)dT(t) q(t) ET (t) T(t) exp q (t)*
dt V C RT(t) C V

hA* 1 exp T (t) T(t)
q (t) C

  
      

          

       (4.2) 

           Table 4.1 Steady state operating data of CSTR - I 

Process variables Normal operating  condition 

Measured product concentration ( AC ) 0.0989 mol/l 

Reactor temperature (T ) 438.773 K 

Coolant flow rate ( cq ) 103 l/min 

Process flow rate ( q ) 100 l/min 

Feed concentration ( AOC ) 1 mol/l 

Feed temperature ( OT ) 350 K 

Inlet coolant temperature ( coT ) 350 K 

CSTR volume ( V ) 100 l 

Heat transfer term ( hA ) 7 x 105 cal/(min K) 

Reaction rate constant ( OK ) 7.2 x 1010min-1 

Activation energy term E
R

 
 
 

 1 x 104 K 

Heat of reaction ( H)  -2 x 105 cal/mol 

Liquid density ( , c ) 1 x 103 g/l 

Specific heats ( pC , pcC ) 1 cal/(g.k) 
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Figure 4.1  CSTR – I 

 

 The state x(t)  and input u(t)  vectors are given by AC
(t)

T
 

  
 

x  

and  cu(t) q .The continuous linear state space model is obtained by 

linearizing the differential equations (4.1 and 4.2) around the nominal 

operating point ( AsC  and sT ) and is given by: 

 

A Bu x x                 (4.3) 
 

x~Cy~                 (4.4) 

 

11 12

21 22

A A
A

A A
 

  
   

where 

11 s
qA k
V

    

 12 A ssSA C k   

 21 s

c pc c pcAS
22 ss c c

p p p c p

hA k
C

C CHCq hAA k q q exp
V C C V C V q C
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 1 1 1
2 3 3 c 3 22

c c c

a a aB a a q exp a exp a
q q q

     
       

     
 

  
c pc

1 2 c0 S 3
p p

ChAwhere a , a T T , a
C C V


    

 

 

  C 0 1 (if  T alone is measurable)    
 

 A

1 0
C ( if  both C and T are measurable)

0 1
 

  
 

 

 

Where matrices A, B represent the Jacobians corresponding to the nominal 

values of the state variables and input variables and y~andu~,x~  represent the 

deviation variables. 
 

4.2.2 Continuous Stirred Tank Reactor (CSTR-II) 
 

 The first principles model of the CSTR-II (Refer Figure 4.2) and 

the operating point data (Refer Table 4.2) as specified in the book titled 

Process Control by Wayne Bequette (2003) have been used in the simulation 

studies. In this CSTR-II, for simplicity, it is assumed that the cooling jacket 

temperature can be directly manipulated, so that an energy balance around the 

jacket is not required. The process is modeled by the following Equations  

(4.5 and 4.6) (Bequette 2002, 2003 and Raymond 2006). 
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Figure 4.2  CSTR – II 

 

Table 4.2  Steady state operating data of CSTR-II 

 

Process Variable 
Normal 

Operating 
Condition 

Volumetric flow rate/ Reactor volume F , hr 1
V

  1 

Pre-exponential factor 0K , hr 1  9,703*3600 

Heat of reaction   , kcal / kgmol  5960 

Activation energy  aE , kcal / kgmol  11843 

Density x Heat capacity 3 0
pC ,kcal / m C  500 

Feed temperature 0
fT C  25 

Concentration of A in feed stream 3
AfC ,kgmol / m  10 

Overall heat transfer coefficient  x Area for heat exchanger
Volume

            

03UA , kcal / m C
V

 

150 

Jacket temperature 0
jT C  25 

 

A      B 
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   aA
Af A 0 A

EdC F C C K exp C
dt V RT

     
 

          (4.5) 

 

    a
f 0 A j

P P

EdT F H UAT T K exp C T T
dt V C RT V C

         
         (4.6) 

 

 The state x(t) and input u(t)  vectors are given by AC
x(t)

T
 

  
 

 

and ju(t) T    . The continuous linear state space model (Refer Equations 4.3 

and 4.4) is obtained by linearizing the differential equations (4.5 and 4.6) 

around the nominal operating point ( AsC  and sT ) and is given by  

 

    

'
s As s

'
s As S

p p p

F K C K
V

A H HF UAK C k
C V V C C

   
         

 

 
p

0
UAB

V C

 
   

  

   
 

1 0
C

0 1

D 0

 
  
 



 

where 

 
s 0

s

'
s 0 2

s s

EK K exp
RT

E EK K exp
RT RT

 
  

 
    

    
   

 

 

4.2.3  Multiple steady state characteristics (CSTR-II) 

 

 If we start at a low jacket temperature, the reactor operates at a low 

temperature (point 1). As the jacket temperature is increased, the reactor 

temperature increases (points 2 and 3) until the low temperature limit point 
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(point 4) is reached. If the jacket temperature is slightly increased further, the 

reactor temperature jumps (ignites) to a high temperature (point 8); any 

further increase in jacket temperature result in slight increase in reactor 

temperature as shown in Figure 4.3.  

 

 If we start at a high jacket temperature (point 9), there is a single 

high reactor temperature, which decreases as the jacket temperature is 

decreased (points 8 and 7). As we move slightly to point which is lower than 

the high temperature limit point (point 6), the reactor temperature drops (also 

known as extinction) to a low temperature (point 2). Further decreases in 

jacket temperature lead to small decrease in reactor temperature. 

 

 
 

Figure 4.3   Reactor temperature vs. Jacket temperature of CSTR-II 

 

 In CSTR-II there are two stable operating points at low and high 

temperature (311.2 Deg. K. and 368.1 Deg. K.) respectively and one unstable 

operating point in middle (339.1 Deg. K.).  
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4.3 OBSERVER FOR CSTR-I 

 

 FKF, ASFKF and EKF design procedures as discussed in chapter 3 

are applied to CSTR-I to estimate the concentration and temperature. The 

dynamic behaviour of the CSTR process is not the same at different operating 

points, and the process is, indeed, nonlinear. To verify this fact, the nonlinear 

system has been linearized at different operating points (see Table 4.3). The 

damping factor and undamped natural frequency have been obtained at 

different operating points and are reported in Table 4.3. From this Table, it 

can be inferred that the process is highly nonlinear, because there is 

significant variation in the damping factor and undamped natural frequency.  

 

Table 4.3 Eigen values, damping factor and undamped natural 

frequency at different operating points 

 

Operating Point Eigen value 
Damping 

factor 
Freq. 

(rad/s) 

At cq =97 

0.0795 443.4566 AC T  

-2.5967 2.9463i 0.661 3.93 

 

At cq =100 

0.0885 441.1475 AC T  

-1.9641  3.0590i 0.540 3.64 

At cq =103 

0.0989 438.7763 AC T  

-1.3886   3.0366i 0.395 3.29 

At cq =106 

0.1110 436.3091 AC T  

-0.8632   2.9083 i 0.285 3.03 

At cq =109 

0.1254 433.6921 AC T  

-0.3810  2.6843i 

   

0.141 2.71  
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 Figures 4.5 and 4.6 show the comparison of the open-loop 

responses of the linear model developed around a nominal operating point 

values (Refer Table 4.1) with the rigorous model in the presence of the 

coolant flow rate variation as shown in Figure 4.4. From the response, it can 

be concluded that the linear model developed around a nominal operating 

point is not able to capture the dynamics (oscillatory behavior) of the CSTR-I 

process adequately. Hence, it is necessary to represent the nonlinear system 

using the T-S fuzzy model.  

 

 
 

Figure 4.4  Variation in coolant flow rate of CSTR-I 
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Figure 4.5 Comparison of the open loop responses of rigorous model 

and linear model of CSTR-I - Reactor Concentration 

 

 

 
 

Figure 4.6 Comparison of the open loop responses of rigorous model 

and linear model of CSTR-I - Reactor Temperature 
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4.3.1 Fuzzy  model for CSTR-I process  

 

 The T-S fuzzy model is based on multiple local linear state space 

models that are weighted using fuzzy membership function. In the T-S fuzzy 

model the rule premises can be considered as an input space partitioning and 

the rule consequences as local models, valid in the rule’s partition. To 

combine multiple local linear state space models one must devise a method 

for partitioning the operating state space. The choice of variables to be used to 

characterize the operating regimes are highly problem dependent Johansen 

(1997). We observed that the dynamic behaviour of the CSTR-I system 

changes significantly depending on the operating point. Therefore, the coolant 

flow rate (premise variable) has been selected to partition the operating space 

of the CSTR-I system. In order to express smooth transitions between 

adjacent regimes, the domain of each operating regime is characterized by a 

fuzzy set membership function. The shape of the membership function has 

been selected in such a way that the weight for the model i will be equal to 1 

if operated exactly at the point at which the model has been devised. If the 

input value is between two linearization points, the output will consider only 

the two associated linear models which imply that the rest of the membership 

function must have a value of zero.   

 

 As suggested by Schott and Bequette (1997), we have selected the 

number of local models to be equal to that of the number of operating regimes 

over which the system is expected to operate. Further, each local model 

parameters (consequent part of T-S fuzzy model) is determined by linearizing 

the nonlinear differential equation (4.1 and 4.2) at different operating points.  

  

 In this work, we have intended to interpolate five models that have 

been generated at five different operating points. Because the operating space 

has been partitioned on a single parameter (coolant flow rate), there are only 
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five rules in the rule base. The universe of discourse is divided into five 

intervals which are defined by the linguistic variables very low, low, medium, 

high and very high respectively. Figure 4.7 shows the triangular membership 

functions that are used to partition the input space cq . 

 

 
 

Figure 4.7   Membership function 

 

 The linear time invariant discrete state space models (Refer 

Equations 3.25 and 3.26) for five different operating points of CSTR - I are: 

 Operating point: 1 ( c Aq = 97  C = 0.0795  and T= 443.4566)  

          

 1

  1.2040e-001   -3.1008e-003
=

  1.5350e+002   1.4438
 

  
 

   1 1

1.2927e-004
=

-9.6293e-002
 

    
 

  

 Operating point: 2 ( cq =100, AC 0.0885  andT 441.1475 ) 

 

 2

  1.7133e-001   -3.2672e-003
=

  1.4362e+002    1.4733
 

  
 

  2 2

1.3035e-004
-9.4559e-002
 

     
 

  

 

 Operating point: 3 ( c Aq =103, C = 0.0989 and T= 438.7763) 

 

 3

 2.2479e-001   -3.4252e-003
=

 1.3333e+002   1.5012
 

  
 

  3 3

1.3074e-004
 -9.2643e-002
 

     
 

  

Very low Low Medium      High Very High
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 Operating point: 4 c A (q =106, C =0.1110  and  T= 436.3091) 

 

 4

2.8071e-001   -3.5731e-003
=

1.2254e+002   1.5270
 

  
 

  4 4

 1.3038e-004
=

 -9.0506e-002
 

    
 

  

 

 Operating point: 5 c A(q =109 , C =0.1254 and T=433.6921)) 

  

 5

3.3941e-001   -3.7084e-003
1.1123e+002    1.5504
 

   
 

   5 5

1.2913e-004
= = 

-8.8085e-002
 

   
 

  

 

  C 0 1 (if  T alone is measurable) for i=1:5    

           A

1 0
C (if  both C and T are measurable) for i=1:5

0 1
 

  
 

 

 

 Figures 4.8 and 4.9 show the rigorous model and fuzzy model 

responses for step changes in the coolant flow rate cq  (Refer Figure 4.4) and 

in the presence of the following initial conditions:  

 

 
A A

ˆC 0.11 and C 0.1

ˆT 434 and T 438.44

 

 

. 

From the response, it is evident that the fuzzy model is able to capture the 

dynamics of CSTR-I process perfectly. It should be noted that the process is 

simulated using the nonlinear first principles model (Refer Equations 4.1  

and 4.2).  
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Figure 4.8 Comparison of the open loop responses of rigorous model 

and fuzzy model of CSTR-I - Reactor Concentration 

 

 
 

Figure 4.9 Comparison of the open loop responses of rigorous model 

and fuzzy model of CSTR-I - Reactor Temperature 
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4.3.2  FKF for CSTR-I process 

 

 The performance of the FKF, when only the reactor temperature 

alone is measured, is shown in Figures 4.10 and 4.11. We have assumed that 

the random errors are present in the measurement (T) as well as in the coolant 

flow rate ( cq ). The covariance matrices of measurement noise and state noise 

are assumed as  

 

 2 2R [0.05) ] and Q (0.05)      

 

 
 

Figure 4.10 Evolution of true and estimated reactor concentration of 

CSTR-I with FKF   
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Figure 4.11 Evolution of true and estimated reactor temperature                         

of CSTR-I with FKF  

 

 The initial value of the error covariance matrix P(0 / 0)  is assumed 

to be 

                    
2

2

(0.05) 0
P(0 / 0)

0 (0.05)

 
   
 

 

 

for the FKF. From Figures 4.10 and 4.11, it can be concluded that reasonably 

good estimates of the reactor concentration and reactor temperature are 

obtained using FKF.  

  

4.3.3 Augmented - state fuzzy Kalman filter for the CSTR-I process 

 

 In this sub-section, the performance of the ASFKF, in the presence 

of input disturbance is reported. 
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4.3.3.1  Input disturbance: state estimation in the presence of a step 

 change in the feed temperature 

 

  In the previous sub-section, we assumed that the input disturbance 

variable (feed temperature) would remain at its nominal steady-state value. In 

this sub-section, the performance of the ASFKF, in the presence of a step 

change in the feed temperature, has been presented. By considering oT   as 

an additional state (unmeasured) variable and augmenting the state space 

model, we obtain an equation of the form given by Equations (3.62) and 

(3.63). The model coefficient matrix  for different operating points is: 

 
4

1 1

1.3917x10
1.0366 x10





 
   

 
           

4

2 1

1.4406x10
1.0451x10





 
   

 
 

4

3 1

1.4857x10
1.0527 x10





 
   

 
      

4

4 1

1.5264x10
1.0596 x10





 
   

 
   

4

5 1

1.5264x10
1.0596 x10





 
   

 
  

 

The C is chosen to be 
 

  C 0 ;for i 1: 5    

The noise covariance matrix Q  is assumed to be 6.25x10-2. The initial value 

of the additional state variable is chosen to be equal to the nominal  

steady-state value.  Figures 4.12 to 4.14 show the estimated reactor 

concentration, the reactor temperature and the estimated unmeasured feed 

temperature in the CSTR-I for step changes in the feed temperature, random 

errors in measurement, and random fluctuations in the feed flow rate around 

the nominal value. From the responses, it can be concluded that the state 

estimates obtained using the ASFKF in the presence of step changes in the 

feed temperature, are reasonably good. The estimate of the feed temperature is 

determined to be reasonably accurate. 
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Figure 4.12 Evolution of true and estimated reactor concentration of                       

CSTR-I with ASFKF (Input Disturbance) 
 

 
 

Figure 4.13 Evolution of true and estimated reactor temperature of 

CSTR-I with ASFKF    (Input Disturbance) 
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Figure 4.14 Evolution of true and estimated feed temperatures of  

CSTR-I with ASFKF           

 

4.3.3.2 Output disturbance: state estimation in the presence of a bias in 

the temperature sensor  

 

 The performance of the FKF in the presence of a bias in the 

temperature sensor has been presented. By considering   as an additional 

state variable and augmenting the state space model, we obtain an equation of 

the form given by Equations (3.62) and (3.63). The model coefficient matrix 

has been chosen as  

 

  
0

Y for i 1: 5
0
 

  
 

 

 

C 1  . The noise covariance matrix Q  is assumed to be 6.25 x10-4. The 

initial value of the additional state variable is chosen to be equal to zero. 
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Figures 4.15 to 4.17 show the estimated reactor concentration, reactor 

temperature, and estimated value of the sensor bias in the CSTR-I in the 

presence of sensor bias of magnitude 0.5 K, as well as random errors in 

measurement and random fluctuations in the feed flow rate around the 

nominal value. Note that sensor bias with a magnitude of 0.5 K has been 

introduced as a step change in the first sampling instant. From the response, 

the estimate of the sensor bias (Refer Figure 4.17) is found to be reasonably 

accurate. 

 

 
 

Figure 4.15 Evolution of true and estimated reactor concentration of 

CSTR-I with ASFKF (Output Disturbance)     
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Figure 4.16 Evolution of true and estimated reactor temperature of 

CSTR-I with ASFKF (Output Disturbance)  

 

 
 

Figure 4.17 Evolution of sensor bias estimates of CSTR-I 
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4.4 OBSERVER FOR CSTR-II 

4.4.1 FKF for CSTR-II process 

 

 The reactor temperature (premise variable) has been selected to 

partition the operating space of the CSTR-II system. Further, fuzzy sets 

described by membership functions on the domain of reactor temperature are 

used for partitioning the operating space of the system into overlapping 

regions.  In this work, we have intended to interpolate three models generated 

at the three steady state operating points. Since, the operating space has been 

partitioned on a single parameter (reactor temperature) there are only three 

rules in the rule base. The universe of discourse is divided into three intervals 

defined by the linguistic variables low, medium and high respectively.  

Figure 4.18 shows the triangular membership functions that are used to 

partition the input space T. The linear time invariant discrete state space 

models for 3 different operating points have been obtained by discretising the 

continuous state space model equations (Refer Equations 4.3 and  4.4) with a 

sampling time equal to 0.1 hr.  

 

 
 

Figure 4.18   Membership function of CSTR-II 

 

 

Low Medium High
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The discrete state space model parameters for different operating points of 

CSTR - II are: 

 

 

A

1

1

A

2

2

Operating point: 1 (T=311.2   C = 8.564)
0.8889 0.0083
0.1867 0.9750

0.0001
 

0.0296

Operating point:2 (T=339.1 C 5.518)
0.8238 0.0229
0.9526 1.1466
0.0003

0.0322

Operating po

 
   

 
 

   
 



 
   

 
 

   
 

A

3

3

int:3 (T=368.1 C 2.359)
0.6003 0.0311
3.5769 1.2438

0.0005
0.0338



 
   

 
 

   
 

  

  C 0 1 (if  T alone is measurable) for i=1:3  

 A

1 0
C (if  both C and T are measurable) for i=1:3

0 1
 

  
 

 

 

 In all the simulation runs, the process is simulated using the 

nonlinear first principles model (Refer Equations 4.5 and 4.6) and the true 

state variables are computed by solving the nonlinear differential equations 

using differential equation solver in Matlab 6.5. The simulation runs have 

been performed under the following initial conditions:  
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A A

A A

ˆ ˆStable operating po int : C & C 8.56 T & T 311.2

ˆ ˆUnstable operating po int : C & C 5.518 T & T 339.1

 

 

  

 

The covariance matrices of measurement noise and state noise are assumed 

as:   

 

    2 2R 0.05 Q 0.05         

 

The initial value of the error covariance matrix (0 / 0)P is assumed to be  
 

 
2

2

(0.05) 0
P(0 / 0)

0 (0.05)
 

  
 

 

 

The performance of the FKF to the variation in jacket temperature (Refer 

Figure 4.19), when only the reactor temperature alone is measured is shown in 

Figures 4.20 to 4.23. From Figures 4.20 to 4.23, it can be concluded that 

reasonably good estimates of the reactor concentration and reactor 

temperature are obtained using FKF both in stable and unstable operating 

points.  
 



 61

 
 

Figure 4.19  Variation in jacket temperature of CSTR-II 

 
 

Figure 4.20 Evolution of true and estimated reactor concentration of 

CSTR-II with FKF (initial state of the process and estimator 

being at stable steady state)      
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Figure 4.21 Evolution of true and estimated reactor temperature of 
CSTR-II with FKF (initial state of the process and estimator 
being at stable steady state)      

            

 
 

Figure 4.22 Evolution of true and estimated reactor concentration of  
CSTR-II with FKF (initial state of the process and estimator 
being at unstable steady state)      
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Figure 4.23 Evolution of true and estimated reactor temperature of 

CSTR-II with FKF (initial state of the process and estimator 

being at unstable steady state)      

      
4.5 COMPARISON OF FUZZY KALMAN FILTER AND 

EXTENDED KALMAN FILTER 

 

 The performance of the proposed nonlinear state estimation scheme 

has to be assessed through simulation because we are dealing with stochastic 

systems. For each case that is being analyzed, a simulation run consisting of 

NT trials with length of each simulation trail being equal to L is conducted. In 

all the simulation trials, the sum of square of the estimation errors, which is 

nothing but the difference between the true value of the state variables and the 

estimated value of the state variables, has been obtained. 

 

 The mean and standard deviation of the estimation error based on 

25 Monte Carlo simulations for FKF and EKF are reported in Table 4.4. For 
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FKF and EKF identical realization of state and measurement noises have been 

used in all the simulation trails. From Table 4.4, it can be observed that the 

estimates obtained by FKF are as good as those obtained by the EKF in all the 

cases. The evolution of true and estimated reactor concentration and reactor 

temperature of CSTR-I with EKF and FKF for a simulation trail are shown in 

Figures 4.24 and 4.25. From the Figures 4.24 and 4.25, it can be concluded 

that FKF performance is similar to that of EKF. 

 

 The FKF helps to reduce the number of computations needed 

compared to the conventional EKF. That is, in the EKF, for each time k, all 

the system matrices must be calculated using the related jacobians as well as 

the updated state estimates at time k. Also, in EKF the nonlinear differential 

equations have to be numerically integrated to obtain the predicted estimates 

of the state variables. On the other hand, in FKF although more matrices are 

needed, all of them have constant values limiting the calculation to  

 

 The determination of weights that will be provided by the 

membership functions. 

 State propagation calculations of each model using the 

appropriate matrices and weighted average of the local linear 

model outputs.  
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Figure 4.24 Evolution of true and estimated reactor concentration of 

CSTR-I with FKF and EKF  

 

 
 

Figure 4.25 Evolution of true and estimated reactor temperature of 

CSTR-I with FKF and EKF     
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Table 4.4  Estimation error for 25 Monte-Carlo simulations 

 

Measurements 
Fuzzy Kalman filter Extended Kalman Filter 

AC            T AC        T 

                 

CA and T 2.7768e-04 2.6025e-06 11.6628 0.1472 1.9127e-04 3.577e-05 9.8652 

 

1.9190 

 

T only 2.7845e-04 2.6134e-06 11.6897 0.1475 1.9214e-04 3.5931e-05 9.8943 

 

1.9246 

 

 

 

 Since, it is not necessary to calculate jacobians and numerical 

integration of nonlinear differential equation, the proposed FKF approach has 

better implementation capabilities to the EKF.  

 

 In order to test the efficacy of the EKF and FKF algorithms, the 

computation time per sampling instant in a single simulation trail (length of 

the simulation trail is 900) has been presented in the form of histogram. From 

the Figure 4.26 it can be concluded that the computation time per sampling 

instant of FKF algorithm is always less than 0.01 second, whereas for EKF 

algorithm, it falls between 0.05 and 0.1 seconds (Refer Figure 4.27). The 

computation time per sampling instant of the FKF for the system considered 

for simulation study has been found to be negligible.  It should be noted that 

the computation time of FKF for even higher order problems will be always 

less demanding as compared with that of EKF.  
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Figure 4.26  Histogram of CSTR-I computation time per sampling 

instant - FKF 
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Figure 4.27  Histogram of CSTR-I computation time per sampling 

instant - EKF 
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