TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>ASPECTS OF STABILITY</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>STABILITY STUDY</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>STABILITY CRITERIA OF LINEAR SYSTEMS</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Graphical Methods for Linear Time Invariant Systems</td>
<td>4</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Algebraic Methods for Linear Time Invariant Systems</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>STABILITY STUDY IN ARTIFICIAL NEURAL NETWORKS</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>STABILITY STUDY IN FUZZY DYNAMICAL SYSTEMS</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>LOWER ORDER MODEL FORMULATION</td>
<td>12</td>
</tr>
<tr>
<td>1.7</td>
<td>PURPOSE OF THE THESIS WORK</td>
<td>15</td>
</tr>
<tr>
<td>1.8</td>
<td>ORGANIZATION OF THE THESIS</td>
<td>15</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>STABILITY ANALYSIS AND DESIGN OF LINEAR TIME INVARIANT SYSTEMS EMPLOYING PSEUDO ROUTH COLUMN POLYNOMIALS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 ROUTH TABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.1 Computational Complexity for Routh Table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 PROPOSED PROCEDURE FOR FORMULATION OF PSEUDO ROUTH COLUMN POLYNOMIALS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.1 Proof for the Pseudo Routh Column Polynomial Approach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.2 Computational Details for Proposed Procedure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 ILLUSTRATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 LINEAR SYSTEM DESIGN USING PSEUDO ROUTH COLUMN POLYNOMIALS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1 Proposed Algorithm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6 ILLUSTRATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7 BILINEAR TRANSFORMATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8 SUMMARY</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 3 | STABILITY ANALYSIS AND DESIGN OF LINEAR TIME INVARIANT SYSTEMS USING AUXILIARY POLYNOMIALS |
| | 3.1 INTRODUCTION |</p>
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>FORMULATION OF AUXILIARY POLYNOMIALS FROM CHARACTERISTIC EQUATION</td>
<td>48</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Significance of Auxiliary Polynomials</td>
<td>49</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Proposed Algorithm for Instability Analysis</td>
<td>52</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Proposed Algorithm for Parameter Design</td>
<td>53</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Computational Complexity for Proposed Auxiliary Polynomial Approach</td>
<td>54</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Illustrations</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>FORMULATION OF AUXILIARY POLYNOMIALS FROM PSEUDO ROUTH COLUMN POLYNOMIALS</td>
<td>62</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Proposed Algorithm for Instability Analysis</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Proposed Algorithm for Design of Parameters</td>
<td>65</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Computational Complexity for Auxiliary Polynomials Extracted from Pseudo Routh Column Polynomials</td>
<td>67</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Illustrations</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>SUMMARY</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>STABILITY ANALYSIS OF A CLASS OF ARTIFICIAL NEURAL NETWORK SYSTEMS</td>
<td>82</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>82</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.2</td>
<td>STABILITY CONDITIONS OF A CLASS OF NON-LINEAR SYSTEMS</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>FORMATION OF MAIN MATRICES AND SUB MATRICES FOR AN ARTIFICIAL NEURAL NETWORK SYSTEM</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>FORMATION OF VERTEX MATRICES</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>PROPOSED PROCEDURE FOR STABILITY ANALYSIS OF ARTIFICIAL NEURAL NETWORKS</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>ILLUSTRATIONS</td>
<td>95</td>
</tr>
<tr>
<td>4.7</td>
<td>SUMMARY</td>
<td>111</td>
</tr>
<tr>
<td>5</td>
<td>STABILITY ANALYSIS OF CERTAIN CLASS OF FUZZY SYSTEMS</td>
<td>112</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>112</td>
</tr>
<tr>
<td>5.2</td>
<td>STABILITY ANALYSIS OF FUZZY SYSTEMS GIVEN BY SYSTEM MATRICES</td>
<td>113</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Fuzzy System Modeling</td>
<td>113</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Proposed Algebraic Approach for Stability Analysis</td>
<td>115</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Illustrations</td>
<td>120</td>
</tr>
<tr>
<td>5.3</td>
<td>STABILITY ANALYSIS OF FUZZY SYSTEMS REPRESENTED BY RELATIONAL MATRICES</td>
<td>128</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Basic Pre-requisites</td>
<td>128</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Max-Min Composition</td>
<td>130</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Proposed Algorithm 1 using Step Responses of Compositional Matrices</td>
<td>132</td>
</tr>
</tbody>
</table>
5.3.4 Proposed Algorithm 2 using Necessary Conditions of Compositional Matrices 140
5.3.5 Proposed Algorithm 3 using Trace and Determinant of Compositional Matrices 146
5.3.6 Proposed Algorithm 4 using the Elements of Compositional Matrices 151
5.3.6.1 Proof for Algorithm 4 152
5.4 STABILIZATION AND STABILITY ANALYSIS OF AN INVERTED PENDULUM MOTION USING FUZZY LOGIC CONTROLLER 155
5.4.1 Overview of Inverted Pendulum Model 156
5.4.2 Design of Fuzzy Logic Controller for the Inverted Pendulum 159
5.4.3 Analyzing Stability Nature of Inverted Pendulum Motion 166
5.4.3.1 Stability analysis using step response of compositional matrices 166
5.4.3.2 Stability analysis using necessary conditions of compositional matrices 169
5.4.3.3 Stability analysis using trace and determinant 171
5.4.3.4 Stability analysis using the elements of compositional matrices 172
5.5 SUMMARY 174
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>LOWER ORDER MODEL FORMULATION</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>OF LINEAR TIME INVARIANT SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>175</td>
</tr>
<tr>
<td>6.2</td>
<td>PROBLEM DEFINITION</td>
<td>176</td>
</tr>
<tr>
<td>6.3</td>
<td>INITIAL LOWER ORDER MODELS USING AUXILIARY POLYNOMIAL APPROACH</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Choice of Second Order Model</td>
<td>179</td>
</tr>
<tr>
<td>6.4</td>
<td>PARTICLE SWARM OPTIMIZATION</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Particle Swarm Optimization Algorithm</td>
<td>180</td>
</tr>
<tr>
<td>6.5</td>
<td>LOWER ORDER MODEL FORMULATION</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>FOR LINEAR TIME INVARIANT CONTINUOUS SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>6.5.1</td>
<td>Single Input Single Output Linear Time Invariant Continuous Systems</td>
<td>183</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Multi Input Multi Output Linear Time Invariant Continuous Systems</td>
<td>191</td>
</tr>
<tr>
<td>6.6</td>
<td>LOWER ORDER MODEL FORMULATION</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>FOR LINEAR TIME INVARIANT DISCRETE SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>6.6.1</td>
<td>Single Input Single Output Linear Time Invariant Discrete Systems</td>
<td>201</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Multi Input Multi Output Linear Time Invariant Discrete Systems</td>
<td>209</td>
</tr>
<tr>
<td>6.7</td>
<td>LOWER ORDER MODEL FORMULATION</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>FOR LINEAR TIME INVARIANT DISCRETE SYSTEMS WITH TRANSFORMATION</td>
<td></td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Single Input Single Output Linear Time Invariant Discrete Systems</td>
<td>219</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Multi Input Multi Output Linear Time Invariant Discrete Systems</td>
<td>226</td>
</tr>
<tr>
<td>6.8</td>
<td>SUMMARY</td>
<td>233</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSION AND FUTURE SCOPE</td>
<td>234</td>
</tr>
<tr>
<td>7.1</td>
<td>CONCLUSION</td>
<td>234</td>
</tr>
<tr>
<td>7.2</td>
<td>SUGGESTIONS FOR FUTURE SCOPE</td>
<td>236</td>
</tr>
<tr>
<td>APPENDIX 1</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>APPENDIX 2</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>APPENDIX 3</td>
<td></td>
<td>241</td>
</tr>
<tr>
<td>APPENDIX 4</td>
<td></td>
<td>243</td>
</tr>
<tr>
<td>APPENDIX 5</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>APPENDIX 6</td>
<td></td>
<td>246</td>
</tr>
<tr>
<td>APPENDIX 7</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>APPENDIX 8</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>APPENDIX 9</td>
<td></td>
<td>263</td>
</tr>
<tr>
<td>APPENDIX 10</td>
<td></td>
<td>268</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>272</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td></td>
<td>288</td>
</tr>
<tr>
<td>VITAE</td>
<td></td>
<td>291</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Routh table for F(s) in equation (2.1)</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Routh Table (n = odd)</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Routh table for Pseudo Routh column polynomial $P_{m-1}(s)$</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Column-wise Computed Routh table for equation (2.15)</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Routh table for F(s) in equation (2.29)</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Routh table for $P_8(s)$ in equation (2.31)</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Comparison of Computational details for Illustration 2.1</td>
<td>32</td>
</tr>
<tr>
<td>2.8</td>
<td>Column-wise Routh table for F(s) in equation (2.32)</td>
<td>33</td>
</tr>
<tr>
<td>2.9</td>
<td>Routh table for $P_4(s)$ in equation (2.35)</td>
<td>34</td>
</tr>
<tr>
<td>2.10</td>
<td>Comparison of Computational details for Illustration 2.2</td>
<td>35</td>
</tr>
<tr>
<td>2.11</td>
<td>Comparison of Computational details for Illustration 2.3</td>
<td>36</td>
</tr>
<tr>
<td>2.12</td>
<td>Column-wise Routh table for equation (2.38)</td>
<td>40</td>
</tr>
<tr>
<td>2.13</td>
<td>Routh table for $P_4(s)$ in equation (2.40)</td>
<td>41</td>
</tr>
<tr>
<td>2.14</td>
<td>Design for lower limit K_L</td>
<td>42</td>
</tr>
<tr>
<td>2.15</td>
<td>Design for upper limit K_H</td>
<td>43</td>
</tr>
<tr>
<td>2.16</td>
<td>Design table for F(s) in equation (2.46)</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Routh table for $A_1(s)$</td>
<td>56</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of computation details for Illustration 3.1</td>
<td>57</td>
</tr>
<tr>
<td>3.3</td>
<td>Routh array for (A_2(s)) in equation (3.19)</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparison of Computational details for Illustration 3.2</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>Routh array for (A_1(s))</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>Design for Lower Limit (K_L)</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>Design for Upper Limit (K_H)</td>
<td>61</td>
</tr>
<tr>
<td>3.8</td>
<td>Design table for (F(s)) in equation (2.46)</td>
<td>62</td>
</tr>
<tr>
<td>3.9</td>
<td>Routh table for (P_{s1}(s)) in equation (3.40)</td>
<td>69</td>
</tr>
<tr>
<td>3.10</td>
<td>Comparison of computation details for Illustration 3.5</td>
<td>70</td>
</tr>
<tr>
<td>3.11</td>
<td>Routh table for (P_{s1}(s)) in equation (3.43)</td>
<td>71</td>
</tr>
<tr>
<td>3.12</td>
<td>Routh table for (P_{s1}(s)) in equation (3.45)</td>
<td>72</td>
</tr>
<tr>
<td>3.13</td>
<td>Routh table for (P_{s2}(s)) in equation (3.46)</td>
<td>72</td>
</tr>
<tr>
<td>3.14</td>
<td>Comparison of computation details for Illustration 3.6</td>
<td>73</td>
</tr>
<tr>
<td>3.15</td>
<td>Column wise Routh table of (F(S)) in equation (3.52)</td>
<td>76</td>
</tr>
<tr>
<td>3.16</td>
<td>Routh array for (P_{s1}(S)) in equation (3.56)</td>
<td>78</td>
</tr>
<tr>
<td>3.17</td>
<td>Sharpened lower limit for (K') when (K=25)</td>
<td>79</td>
</tr>
<tr>
<td>3.18</td>
<td>Sharpened upper limit for (K') when (K=25)</td>
<td>79</td>
</tr>
<tr>
<td>3.19</td>
<td>Trial values of (K) and ranges of (K') for Illustration 3.8</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>Marden’s table for equation (4.39)</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>Fuller’s table for equation (4.47)</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Marden’s table for equation (4.55)</td>
<td>96</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.4</td>
<td>Sufficient conditions for asymptotic stability of equation (4.54)</td>
<td>97</td>
</tr>
<tr>
<td>4.5</td>
<td>Fuller’s table for equation (4.56)</td>
<td>98</td>
</tr>
<tr>
<td>4.6</td>
<td>Sufficient condition for aperiodic stability of equation (4.54)</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>X(k+1) at different instants of k</td>
<td>101</td>
</tr>
<tr>
<td>5.1</td>
<td>Marden’s table for equation (5.7)</td>
<td>116</td>
</tr>
<tr>
<td>5.2</td>
<td>Fuller’s table for equation (5.12)</td>
<td>117</td>
</tr>
<tr>
<td>5.3</td>
<td>Marden’s table for equation (5.19)</td>
<td>121</td>
</tr>
<tr>
<td>5.4</td>
<td>Sufficient conditions for asymptotic stability of equation (5.18)</td>
<td>121</td>
</tr>
<tr>
<td>5.5</td>
<td>Fuller’s table for equation (5.20)</td>
<td>122</td>
</tr>
<tr>
<td>5.6</td>
<td>Sufficient condition for aperiodic stability of equation (5.18)</td>
<td>123</td>
</tr>
<tr>
<td>5.7</td>
<td>X(k+1) at different instants of k for Illustration 5.1</td>
<td>125</td>
</tr>
<tr>
<td>5.8</td>
<td>X(k+1) at different instants of k for Illustration 5.2</td>
<td>127</td>
</tr>
<tr>
<td>5.9</td>
<td>Peak amplitude for compositional matrices of fuzzy relational matrix in Illustration 5.3</td>
<td>136</td>
</tr>
<tr>
<td>5.10</td>
<td>Peak amplitude for compositional matrices of fuzzy relational matrix in Illustration 5.4</td>
<td>140</td>
</tr>
<tr>
<td>5.11</td>
<td>C(z) at z = 0, 1 and -1 for compositional matrices of Illustration 5.5</td>
<td>144</td>
</tr>
<tr>
<td>5.12</td>
<td>C(z) at z = 0, 1 and -1 for compositional matrices of Illustration 5.6</td>
<td>145</td>
</tr>
<tr>
<td>5.13</td>
<td>Trace and determinant values of compositional matrices in Illustration 5.7</td>
<td>149</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.14</td>
<td>Trace and determinant values of compositional matrices in Illustration 5.8</td>
<td>150</td>
</tr>
<tr>
<td>5.15</td>
<td>Control rules (Fuzzy Associative Memory Table)</td>
<td>162</td>
</tr>
<tr>
<td>5.16</td>
<td>Peak amplitudes for compositional matrices of Fuzzy Logic Controller based inverted pendulum model</td>
<td>169</td>
</tr>
<tr>
<td>5.17</td>
<td>Evaluation of C(z) for each compositional matrices at z = 0, 1 and -1 of Fuzzy Logic Controller based inverted pendulum</td>
<td>170</td>
</tr>
<tr>
<td>5.18</td>
<td>Trace and determinant for compositional matrices of Fuzzy Logic Controller based inverted pendulum</td>
<td>172</td>
</tr>
<tr>
<td>6.1</td>
<td>Comparison of integral square error of unit step time response for Illustration 6.1</td>
<td>188</td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison of integral square error of unit step time response for Illustration 6.2</td>
<td>190</td>
</tr>
<tr>
<td>6.3</td>
<td>Transient gain and Steady state gain for $G_{11}(s)$, $G_{12}(s)$, $G_{21}(s)$ and $G_{22}(s)$</td>
<td>195</td>
</tr>
<tr>
<td>6.4</td>
<td>Results of auxiliary polynomial and PSO approach for $G_{11}(s)$, $G_{12}(s)$, $G_{21}(s)$ and $G_{22}(s)$</td>
<td>196</td>
</tr>
<tr>
<td>6.5</td>
<td>Comparison of integral square error for Illustration 6.3</td>
<td>197</td>
</tr>
<tr>
<td>6.6</td>
<td>Comparison of integral square error for Illustration 6.4</td>
<td>206</td>
</tr>
<tr>
<td>6.7</td>
<td>Comparison of integral square error for Illustration 6.5</td>
<td>208</td>
</tr>
<tr>
<td>6.8</td>
<td>Transient gain and Steady state gain for $G_{11}(z)$, $G_{12}(z)$, $G_{21}(z)$ and $G_{22}(z)$</td>
<td>213</td>
</tr>
<tr>
<td>6.9</td>
<td>Results for auxiliary polynomial and PSO approach for $G_{11}(z)$, $G_{12}(z)$, $G_{21}(z)$ and $G_{22}(z)$</td>
<td>214</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.10</td>
<td>Comparison of integral square error for Illustration 6.6</td>
<td>216</td>
</tr>
<tr>
<td>6.11</td>
<td>Comparison of integral square error of unit step time response for Illustration 6.7</td>
<td>223</td>
</tr>
<tr>
<td>6.12</td>
<td>Comparison of integral square error for Illustration 6.8</td>
<td>225</td>
</tr>
<tr>
<td>6.13</td>
<td>Comparison of integral square error for Illustration 6.9</td>
<td>230</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Three layer neural network with two input neurons, two hidden neurons and one output neuron</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Flowchart for stability analysis of neural network system</td>
<td>94</td>
</tr>
<tr>
<td>4.3</td>
<td>Second order neural network with trained weights and initial conditions</td>
<td>99</td>
</tr>
<tr>
<td>4.4</td>
<td>Behavior of the neural network in Illustration 4.1</td>
<td>101</td>
</tr>
<tr>
<td>4.5</td>
<td>Three layer neural network with two input neurons, four hidden neurons and one output neuron</td>
<td>102</td>
</tr>
<tr>
<td>4.6</td>
<td>Behavior of neural network system given in Illustration 4.2</td>
<td>104</td>
</tr>
<tr>
<td>4.7</td>
<td>Behavior of neural network system given in Illustration 4.3</td>
<td>106</td>
</tr>
<tr>
<td>4.8</td>
<td>Behavior of neural network system in Illustration 4.4</td>
<td>108</td>
</tr>
<tr>
<td>4.9</td>
<td>Third order neural network</td>
<td>109</td>
</tr>
<tr>
<td>4.10</td>
<td>Behavior of neural network system given in Illustration 4.5</td>
<td>110</td>
</tr>
<tr>
<td>5.1</td>
<td>Flowchart for stability analysis of fuzzy systems</td>
<td>119</td>
</tr>
<tr>
<td>5.2</td>
<td>Membership functions of Illustration 5.1</td>
<td>120</td>
</tr>
<tr>
<td>5.3</td>
<td>Behavior of fuzzy system for Illustration 5.1</td>
<td>126</td>
</tr>
<tr>
<td>5.4</td>
<td>Behavior of fuzzy system for Illustration 5.2</td>
<td>128</td>
</tr>
<tr>
<td>5.5</td>
<td>A fuzzy system</td>
<td>129</td>
</tr>
<tr>
<td>5.6</td>
<td>Flowchart for proposed algorithm 1</td>
<td>133</td>
</tr>
<tr>
<td>5.7</td>
<td>Step response for Y(z) in equation (5.46)</td>
<td>135</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.8</td>
<td>Step response for Y(z) in equation (5.50)</td>
<td>136</td>
</tr>
<tr>
<td>5.9</td>
<td>Step response for Y(z) in equation (5.56)</td>
<td>138</td>
</tr>
<tr>
<td>5.10</td>
<td>Step response for Y(z) in equation (5.60)</td>
<td>139</td>
</tr>
<tr>
<td>5.11</td>
<td>Flowchart for proposed algorithm 2</td>
<td>142</td>
</tr>
<tr>
<td>5.12</td>
<td>Flowchart for proposed algorithm 3</td>
<td>147</td>
</tr>
<tr>
<td>5.13</td>
<td>Model of an inverted pendulum</td>
<td>157</td>
</tr>
<tr>
<td>5.14</td>
<td>Open loop inverted pendulum model</td>
<td>158</td>
</tr>
<tr>
<td>5.15</td>
<td>Step response of inverted pendulum represented by equation (5.89)</td>
<td>158</td>
</tr>
<tr>
<td>5.16</td>
<td>A simple fuzzy logic control systems</td>
<td>159</td>
</tr>
<tr>
<td>5.17</td>
<td>Fuzzy logic controller for an inverted pendulum on a cart</td>
<td>160</td>
</tr>
<tr>
<td>5.18</td>
<td>Membership functions of e, (\dot{e}) and Q</td>
<td>161</td>
</tr>
<tr>
<td>5.19</td>
<td>Output response of Fuzzy Logic Controller based inverted pendulum</td>
<td>164</td>
</tr>
<tr>
<td>5.20</td>
<td>Control surface for designed Fuzzy Logic Controller</td>
<td>164</td>
</tr>
<tr>
<td>5.21</td>
<td>Fuzzy inference rules designed for inverted pendulum model</td>
<td>165</td>
</tr>
<tr>
<td>5.22</td>
<td>MATLAB-SIMULINK model for Fuzzy Logic Controller based inverted pendulum</td>
<td>165</td>
</tr>
<tr>
<td>5.23</td>
<td>Unit step response of Y(z) in equation (5.94)</td>
<td>167</td>
</tr>
<tr>
<td>5.24</td>
<td>Unit step response of Y(z) in equation (5.97)</td>
<td>168</td>
</tr>
<tr>
<td>6.1</td>
<td>Flowchart for Particle Swarm Optimization algorithm</td>
<td>182</td>
</tr>
<tr>
<td>6.2</td>
<td>Flowchart for lower order model formulation of single input single output linear time invariant continuous system</td>
<td>186</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of unit step responses for Illustration 6.1</td>
<td>188</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.4</td>
<td>Comparison of unit step responses for Illustration 6.2</td>
<td>191</td>
</tr>
<tr>
<td>6.5(a)</td>
<td>Unit step responses for $G_{11}(s)$ - Illustration 6.3</td>
<td>198</td>
</tr>
<tr>
<td>6.5(b)</td>
<td>Unit step responses for $G_{12}(s)$ - Illustration 6.3</td>
<td>198</td>
</tr>
<tr>
<td>6.5(c)</td>
<td>Unit step responses for $G_{21}(s)$ - Illustration 6.3</td>
<td>199</td>
</tr>
<tr>
<td>6.5(d)</td>
<td>Unit step responses for $G_{22}(s)$ - Illustration 6.3</td>
<td>199</td>
</tr>
<tr>
<td>6.6</td>
<td>Flowchart for lower order model formulation of single input single output linear time invariant discrete system</td>
<td>204</td>
</tr>
<tr>
<td>6.7</td>
<td>Unit step responses for Illustration 6.4</td>
<td>206</td>
</tr>
<tr>
<td>6.8</td>
<td>Unit step responses for Illustration 6.5</td>
<td>208</td>
</tr>
<tr>
<td>6.9(a)</td>
<td>Unit step response for $G_{11}(z)$ - Illustration 6.6</td>
<td>217</td>
</tr>
<tr>
<td>6.9(b)</td>
<td>Unit step response for $G_{12}(z)$ - Illustration 6.6</td>
<td>217</td>
</tr>
<tr>
<td>6.9(c)</td>
<td>Unit step response for $G_{21}(z)$ - Illustration 6.6</td>
<td>218</td>
</tr>
<tr>
<td>6.9(d)</td>
<td>Unit step response for $G_{22}(z)$ - Illustration 6.6</td>
<td>218</td>
</tr>
<tr>
<td>6.10</td>
<td>Flowchart for model formulation of single input single output linear time invariant discrete system using transformation</td>
<td>221</td>
</tr>
<tr>
<td>6.11</td>
<td>Unit step response for Illustration 6.7</td>
<td>223</td>
</tr>
<tr>
<td>6.12</td>
<td>Unit step response for Illustration 6.8</td>
<td>225</td>
</tr>
<tr>
<td>6.13(a)</td>
<td>Unit step response for $G_{11}(z)$ - Illustration 6.9</td>
<td>231</td>
</tr>
<tr>
<td>6.13(b)</td>
<td>Unit step response for $G_{12}(z)$ - Illustration 6.9</td>
<td>231</td>
</tr>
<tr>
<td>6.13(c)</td>
<td>Unit step response for $G_{21}(z)$ - Illustration 6.9</td>
<td>232</td>
</tr>
<tr>
<td>6.13(d)</td>
<td>Unit step response for $G_{22}(z)$ - Illustration 6.9</td>
<td>232</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>General system matrix</td>
</tr>
<tr>
<td>A_i, A_j, A_{ij}</td>
<td>System matrices</td>
</tr>
<tr>
<td>A_p</td>
<td>Number of auxiliary polynomials</td>
</tr>
<tr>
<td>$A(P^n)$</td>
<td>Peak amplitude value of unit step response of $Y(z)$ corresponding to P_n for n-th composition.</td>
</tr>
<tr>
<td>$A_{n,3}(s)$</td>
<td>Auxiliary Polynomials</td>
</tr>
<tr>
<td>b</td>
<td>Friction of the cart</td>
</tr>
<tr>
<td>B</td>
<td>Positive definite matrix</td>
</tr>
<tr>
<td>c_1, c_2</td>
<td>Learning factors</td>
</tr>
<tr>
<td>$C(z)$</td>
<td>Characteristic equation in z-domain</td>
</tr>
<tr>
<td>D</td>
<td>Common denominator of the transfer function of a higher order multi input multi output system</td>
</tr>
<tr>
<td>D^2</td>
<td>Common denominator of the transfer function of a second order multi input multi output system</td>
</tr>
<tr>
<td>$D(P^n)$</td>
<td>Determinant of relational matrix P for n-th composition</td>
</tr>
<tr>
<td>e</td>
<td>Error</td>
</tr>
<tr>
<td>\dot{e}</td>
<td>Change in error</td>
</tr>
<tr>
<td>E</td>
<td>Integral square error</td>
</tr>
<tr>
<td>$E(P^n)$</td>
<td>Energy of relational matrix P for n-th composition</td>
</tr>
<tr>
<td>Et</td>
<td>Total number of elements computed in Routh table</td>
</tr>
<tr>
<td>F</td>
<td>Force applied to the cart</td>
</tr>
<tr>
<td>$F(\cdot)$</td>
<td>Family of fuzzy sets</td>
</tr>
<tr>
<td>$F(s)$</td>
<td>Characteristic equation of Linear Time Invariant Continuous System represented by the Laplace variable s</td>
</tr>
<tr>
<td>$F(S)$</td>
<td>Transformed characteristic equation in ‘S’ domain</td>
</tr>
</tbody>
</table>
f - Frequency of oscillations
f(v) - Activation function
\(f_{ij}(v_{ij}) \) - Outputs calculated from the hidden and output layer neurons
F(z) - Characteristic equation in z-domain
g - Gravitational acceleration
g_1 - Minimum value of f(v)
g_2 - Maximum value of f(v)
g_{best} - Best fitness value obtained so far by any particle in the entire population
G(p) - Transfer function of a single input single output system and Transfer function matrix of multi input multi output system in continuous domain represented by p, which is equivalent to the Laplace variable ‘s’
G_{ij}(p) - Transfer function between \(i^{th} \) input and \(j^{th} \) output of a multi input multi output system in continuous domain represented by p, which is equivalent to the Laplace variable ‘s’
G(s) - Transfer function of a single input single output system and Transfer function matrix of multi input multi output system in continuous domain represented by the Laplace variable ‘s’
G_{ij}(s) - Transfer function between \(i^{th} \) input and \(j^{th} \) output of a multi input multi output system in continuous domain
G(z) - Transfer function of a single input single output system and Transfer function matrix of multi input multi output system in discrete domain represented by the complex variable z
G_{ij}(z) - Transfer function between \(i^{th} \) input and \(j^{th} \) output of a multi input multi output system in discrete domain
h(k) - Weighting parameter
H - Maximum number of columns to be computed in Routh table
I - Unit identity matrix
I_p - Inertia of the pendulum
k - Number of rows to be computed
K - Gain parameter to be designed for system stability
K' - Second gain parameter to be designed for system stability
K_1 - Lowest real value of gain parameter
K_2 - Highest real value of gain parameter
K_3 - Mid point between the parameters K_1 and K_2
K_H - Sharpened higher limit of gain parameter K
K'_H - Sharpened higher limit of gain parameter K'
K_L - Sharpened lower limit of gain parameter K
K'_L - Sharpened lower limit of gain parameter K'
l - Length to pendulum centre of mass
L - Minimum number of columns to be computed in Routh table
m - Order of the lower order model
m_p - Mass of the pendulum
M_p - Mass of the cart
M_{ij} - Fuzzy sets
M_1, M_2 - Membership functions
n - Order of the system under consideration represented either by characteristic equation or transfer function
n_i - Number of neurons in the input layer
n_h - Number of neurons in the hidden layer
N_a - Total number of elements computed in Routh table using auxiliary polynomial approach

N_P - Total number of elements computed in Routh table using Pseudo Routh column polynomial approach

N_{pa} - Total number of elements computed in Routh table using auxiliary polynomials extracted from Pseudo Routh column polynomial

P - Relational matrix of the fuzzy system

p_i - Position of particle i

p_{best} - Position with the ‘best’ fitness value found so far by particle i

$P_m(s)$ - Pseudo Routh Column Polynomial constructed for m-th column

P_R - Number of Pseudo Routh Column Polynomials

P_s - Scaled (Normalized) relational matrix

P^*_s - Compositional matrix computed using max-min composition for n-th composition

q - Slope parameter

Q - Output Relational matrix

Q_s - Scaled output relational matrix Q

r - Number of IF-THEN rules

R - Fuzzy relation describing the fuzzy system

R_1, R_2 - Random variables in the range $[0, 1]$

$R^2(p)$ - Second order transfer function of a single input single output system and second order transfer function matrix of multi input multi output system in continuous domain represented by p, which is equivalent to the Laplace variable s
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^2(s)$</td>
<td>Second order transfer function of a single input single output system and second order transfer function matrix of multi input multi output system in continuous domain represented by the Laplace variable s</td>
</tr>
<tr>
<td>$R^2(z)$</td>
<td>Second order transfer function of a single input single output system and second order transfer function matrix of multi input multi output system in discrete domain represented by the complex variable z</td>
</tr>
<tr>
<td>S</td>
<td>Variable substituted parameter including the damping ratio</td>
</tr>
<tr>
<td>SSG</td>
<td>Steady state gain</td>
</tr>
<tr>
<td>TG</td>
<td>Transient gain</td>
</tr>
<tr>
<td>$T(P^n)$</td>
<td>Trace of relational matrix P for n-th composition</td>
</tr>
<tr>
<td>u</td>
<td>Input to the pendulum</td>
</tr>
<tr>
<td>$U(k)$</td>
<td>Input signal</td>
</tr>
<tr>
<td>U_k</td>
<td>Input at the k-th instant</td>
</tr>
<tr>
<td>v_i</td>
<td>Velocity of particle i</td>
</tr>
<tr>
<td>v_{ij}</td>
<td>Net inputs calculated for the hidden and output layer neurons</td>
</tr>
<tr>
<td>$w_i(k)$</td>
<td>Product of grade of memberships</td>
</tr>
<tr>
<td>w_{ijs}</td>
<td>Connection weights between input, hidden and output layer neurons</td>
</tr>
<tr>
<td>x</td>
<td>Cart position coordinate</td>
</tr>
<tr>
<td>\dot{x}</td>
<td>Velocity of the cart</td>
</tr>
<tr>
<td>$X(k-1)$</td>
<td>Input at $(k-1)$-th instant</td>
</tr>
<tr>
<td>$X(k)$</td>
<td>Input at k-th instant</td>
</tr>
<tr>
<td>$X(k+1)$</td>
<td>Output at $(k+1)$-th instant</td>
</tr>
<tr>
<td>X_k</td>
<td>Fuzzy set of the states at the k-th time instant</td>
</tr>
<tr>
<td>X_{k+1}</td>
<td>Fuzzy set of the states at the $(k+1)$-th time instant</td>
</tr>
</tbody>
</table>
y_t - Unit step time response of the lower order system at the t^{th} time instant

Y_t - Unit step time response of the given higher order system at the t^{th} instant in the time interval $0 \leq t \leq \tau$

$Y(z)$ - Open loop all pole fuzzy system

z - Discrete variable

ξ - Damping ratio for system with oscillations

α_i, α_k - Roots of the characteristic equation $F(s)$

σ_k - Real part of the root α_k

ω_k - Imaginary part of the root α_k

λ - Gain parameter

τ - Time period

θ - Pendulum angle from vertical position

$\dot{\theta}$ - Angular velocity of the pendulum

μ_e - Membership values of e

$\mu_{\dot{e}}$ - Membership values of \dot{e}

μ_Q - Membership values of Q

\circ - Composition operator

Abbreviations

AMSE - Association for the advancement of Modelling and Simulation techniques in Enterprises

ANN - Artificial Neural Network

AVR - Automatic Voltage Regulator

BAM - Bidirectional Associative Memory

BPN - Back Propagation Network

CPU - Central Processing Unit

FAM - Fuzzy Associative Memory

FLC - Fuzzy Logic Controller
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Inverted Pendulum</td>
</tr>
<tr>
<td>ISE</td>
<td>Integral Square Error</td>
</tr>
<tr>
<td>LDI</td>
<td>Linear Differential Inclusions</td>
</tr>
<tr>
<td>LHS</td>
<td>Left Half Side</td>
</tr>
<tr>
<td>LMI</td>
<td>Linear Matrix Inequality</td>
</tr>
<tr>
<td>LT</td>
<td>Linear Transformation</td>
</tr>
<tr>
<td>LTIS</td>
<td>Linear Time Invariant Systems</td>
</tr>
<tr>
<td>LTICS</td>
<td>Linear Time Invariant Continuous Systems</td>
</tr>
<tr>
<td>LTIDS</td>
<td>Linear Time Invariant Discrete Systems</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multi Input Multi Output</td>
</tr>
<tr>
<td>NL</td>
<td>Negative Large</td>
</tr>
<tr>
<td>NM</td>
<td>Negative Medium</td>
</tr>
<tr>
<td>NS</td>
<td>Negative Small</td>
</tr>
<tr>
<td>PL</td>
<td>Positive Large</td>
</tr>
<tr>
<td>PM</td>
<td>Positive Medium</td>
</tr>
<tr>
<td>PRCP</td>
<td>Pseudo Routh Column Polynomial</td>
</tr>
<tr>
<td>PS</td>
<td>Positive Small</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>RHS</td>
<td>Right Half Side</td>
</tr>
<tr>
<td>SISO</td>
<td>Single Input Single Output</td>
</tr>
<tr>
<td>SSG</td>
<td>Steady State Gain</td>
</tr>
<tr>
<td>TF</td>
<td>Transfer Function</td>
</tr>
<tr>
<td>TG</td>
<td>Transient Gain</td>
</tr>
<tr>
<td>ZE</td>
<td>Zero</td>
</tr>
</tbody>
</table>