Chapter 2

Splitting Off Operation for Graphs and its Applications

Chapter 2

Splitting Off Operation for Graphs and its Applications

In order to generalize any graph theoretic result to matroids one has to characterize that result in terms of the cycles of the graphs. In this chapter, we characterize cycles and spanning trees of the new graph obtained by applying splitting off operation on the given graph in terms of the cycles and spanning trees of the original graph. We also give some applications of this operation.

1. Introduction

Let G be a connected graph and let v be a vertex of degree at least three in G. Given incident edges $x = vv_1$ and $y = vv_2$ in a graph G, we can construct a new graph G_{xy} by adding the edge v_1v_2 and deleting x and y. We say that G_{xy} is obtained from G by splitting off x and y. If $v_1 = v_2$ then the resulting loop is deleted. For practical purposes, we denote the new edge v_1v_2 in G_{xy} by a. The transition from G to G_{xy} is called the splitting off operation. We can retrieve the graph G from G_{xy} by subdividing the edge a by introducing a new vertex say v' and then identifying v and v'. The Figure 1 illustrates this construction explicitly.

Splitting off operation was introduced by Lovasz [13] and has important applications in graph theory ([11],[12]). The splitting off operation
is the useful method for solving problems in graph connectivity. This operation may decrease the edge-connectivity of the graph. The essence of the edge-splitting method is to find a pair of edges which can be splitting off maintaining the edge-connectivity properties of the graph. Let $G = (V + s, E)$ be k-edge connected in V ($k \geq 2$) and let $d(s)$ be even. Lovasz [13] proved that for every edge su there exists an edge sv for which splitting off the pair su, sv maintains k-edge connectivity. If such a good pair exists then one may reduce the problem to a smaller graph which can lead to inductive proofs.

Another typical application is the edge connectivity augmentation problems. Using the edge splitting results and the g-polymatroid intersection theorem of Frank [6], Tibor Jordan [11] gave a min-max theorem and a polynomial algorithm for the simultaneous edge-connectivity augmentation problems. In this problem two graphs $G' = (V, E')$, $H' = (V, K')$ and two integers $k, l \geq 2$ are given and the goal is to find a smallest set of new edges whose addition makes G' (and H') k-edge connected (l-edge connected, respectively) simultaneously. This algorithm finds a feasible solution whose size does not exceed the optimum by more than one. If k and l are both even then the solution is optimal.
2. Cycles in G_{xy}

In the following proposition, we characterize the cycles of the graph G_{xy} in terms of the cycles of the graph G.

Proposition 2.1. Let G be a graph and $x = vv_1, y = vv'_1$ be a pair of adjacent edges in G. Let G_{xy} be a graph obtained from G by applying splitting off operation with respect to the pair $\{x, y\}$. Then C is a cycle in G_{xy} if and only if one of the following conditions hold:

1. C is a cycle of G containing neither of the edges x and y.
2. $C = (C' - \{x, y\}) \cup \{v_1v'_1\}$, where C' is a cycle of G containing x and y.
3. $C = ((C_1 \cup C_2) - \{x, y\}) \cup \{v_1v'_1\}$, where C_1 and C_2 are disjoint cycles of G each containing precisely one of x and y, and $C_1 \cup C_2$ contains no cycle of G containing both x and y, or neither.

Proof. Sufficiency. Let C be a cycle of G containing neither x nor y. Then clearly C is a cycle of G_{xy}.

Now, suppose $C = (C' - \{x, y\}) \cup \{v_1v'_1\}$, where C' is a cycle of G containing both x and y. For convenience, let $C': vxv_1v_2...e_{i-1}v_ie_i...v'_1vy$. By applying the splitting off operation we get the trail $(C' - \{x, y\}) \cup \{v_1v'_1\}$. We prove that $(C' - \{x, y\}) \cup \{v_1v'_1\}$ is a cycle in G_{xy}. On the contrary, assume that $(C' - \{x, y\}) \cup \{v_1v'_1\}$ is not a cycle in G_{xy}. Then $(C' - \{x, y\}) \cup \{v_1v'_1\}$ is a closed walk in which some vertex is repeated. This vertex must be repeated in C', a contradiction to the fact that C' is a cycle. Therefore, $(C' - \{x, y\}) \cup \{v_1v'_1\}$ is a cycle in G_{xy}.
Next, suppose \(C = ((C_1 \cup C_2) - \{x, y\}) \cup \{v_1v'_1\} \), where \(C_1 \) and \(C_2 \) are disjoint cycles of \(G \), each containing precisely one of \(x \) and \(y \), and \(C_1 \cup C_2 \) contains no cycle of \(G \) containing both \(x \) and \(y \), or neither.

For convenience, let \(C_1 : \ v x v_1 e_1 v_2 \ldots e_{i-1} v_i e_i \ldots e_n v. \)

\(C_2 : \ v y v'_1 e'_1 v'_2 \ldots e'_{j-1} v'_j e'_j \ldots e'_k v. \) By applying the splitting off operation, the set \(((C_1 \cup C_2) - \{x, y\}) \cup \{v_1v'_1\} \) will result into the sequence:

\[v e_n v_n e_{n-1} \ldots v_{i+1} e_i v_i e_i \ldots v_2 e_1 v_1 v'_1 e'_1 v'_2 \ldots e'_{j-1} v'_j e'_j \ldots e'_k v. \]

Suppose now \(C_1 \cup C_2 \) does not contain a cycle of type (1) or (2) then we prove that \(((C_1 \cup C_2) - \{x, y\}) \cup \{v_1v'_1\} \) is a cycle of \(G_{xy} \).

On the contrary, assume that \(((C_1 \cup C_2) - \{x, y\}) \cup \{v_1v'_1\} \) is not a cycle in \(G_{xy} \). Then it is a closed walk in which some vertex is repeated. Thus some vertex \(v_i \) in \(C_1 \) must be the same as the vertex \(v'_j \) in \(C_2 \) (vertices in \(C_1 \) and also in \(C_2 \) cannot be repeated). But then the sequence \(C''' : \ v e_n v_n e_{n-1} v_{i+1} e_i v_i e_i \ldots v_2 e_1 v_1 v'_1 e'_1 v'_2 \ldots e'_{j-1} v'_j e'_j \ldots e'_k v \) is contained in \(C_1 \cup C_2 \) and contains a cycle of type (1). This is a contradiction to the assumption. Therefore \(((C_1 \cup C_2) - \{x, y\}) \cup \{v_1v'_1\} \) is a cycle of \(G_{xy} \).

Necessity. Suppose \(C \) is a cycle of \(G_{xy} \). By definition of \(G_{xy} \), \(x, y \notin E(G_{xy}) \). Hence \(E(G) \cap \{x, y\} = \phi \).

(i) If \(C \) does not contain the edge \(v_1v'_1 \), then \(C \) is a cycle of \(G \). i.e. a cycle of type (1).

(ii) Suppose that \(C \) contains the edge \(v_1v'_1 \). Then \((C \cup \{x, y\}) - v_1v'_1 = C' \) is a cycle in \(G \) containing \(x \) and \(y \) which is of type (2).

(iii) \(C \) contains neither \(x \) nor \(y \) but contains an edge \(\{v_1v'_1\} \) and the vertex \(v \). Then we show that \(C \) is a cycle of type (3).

Let \(C : \ v'_1 v_1 e_1 v_2 e_2 \ldots v_i e_i \ldots v_n v'_1. \) Let \(v_i = v \) for some vertex \(v_i \in V(C) \).

Now, subdivide the edge \(v_1v'_1 \) so that \(v''v_1 = x \) and \(v''v'_1 = y \), where \(v'' \)
is a new vertex of degree 2. Then decompose the cycle C into two parts as $C_1: v''v_1e_1...e_{i-1}v_i = v$ and $C_2: v = v_ie_i+v_{i+1}e_{i+1}...v_{n-1}v_nv_1'v''$. Hence $C_1: x = v''v_1e_1...e_{i-1}v_i = v$ and $C_2: v = v_ie_i+v_{i+1}e_{i+1}...v_{n-1}v_nv_1'v'' = y$.

Now, identify the vertices v'' and v so that C_1 and C_2 are edge disjoint cycles in G such that $x \in C_1$, $y \in C_2$.

We show that $C_1 \cup C_2$ does not contain any cycle of type (1) or (2). On the contrary, suppose that $C_1 \cup C_2$ contains a cycle say C^{iv} of type (2) say. Then $x, y \in C^{iv} \subseteq C_1 \cup C_2$. Let $C^{iv}: v_nv_1v_1e_1v_2...v_{k-1}e_{k-1}v_k(=v_m)e_{m+1}v_{m+1}...v_{n-1}e_{n-1}v_n$. But then the cycle $C^{vi}: v_nv_1v_1e_1v_2...v_{k-1}e_{k-1}v_ke_{m+1}...v_{n-1}e_{n-1}v_n$ of G_{xy} will be properly contained in C which is a contradiction to the fact that C is a cycle in G_{xy}. Suppose that $C_1 \cup C_2$ contains a cycle say C^{vi} of type (1). Then $x, y \notin C^{vi} \subseteq C_1 \cup C_2$. Let $C^{vi}: v_nv_1v_1e_1v_2...v_{k-1}e_{k-1}v_k(=v_m)e_{m+1}v_{m+1}...v_{n-1}e_{n-1}v_n$. But then the cycle C^{vi} will be properly contained in C which is a contradiction to the fact that C is a cycle of G_{xy}. This completes the proof of the proposition.

If C denotes the set of all cycles of G_{xy}, and C_0, C_1, C_2 denote the set of cycles of G_{xy} of type (1),(2) and (3) respectively, then $C = C_0 \cup C_1 \cup C_2$.

3. Spanning Trees in G_{xy}

In this section, we characterize the spanning trees of the graph G_{xy} in terms of the spanning trees of the graph G. We consider two cases depending on whether $\{x, y\}$ forms a cutset in G or not. Firstly, we prove the following Lemma.
Lemma 3.1. Let T be a spanning tree of a graph G and let $x, y \in E(G)$. If $\{x, y\}$ forms a cut set in G, then every spanning tree of G contains at least one of x and y.

Proof. On the contrary, suppose that T is a spanning tree of G such that $x, y \notin T$. Let C be a fundamental cycle contained in $T \cup \{x\}$. Then $x \in C$ while $y \notin C$, a contradiction to the fact that $\{x, y\}$ form a cut set in G.

Theorem 3.2. Let T be a spanning tree of a graph G and let $x, y \in E(G)$. Suppose $\{x, y\}$ forms a cut set in G, $a \in E(G_{xy}) - E(G)$. Then T' is a spanning forest of G_{xy} if and only if one of the following conditions hold:

(i) $T' = T - \{x\}$, where T is a spanning tree of G containing x but not y.

(ii) $T' = T - \{y\}$, where T is a spanning tree of G containing y but not x.

(iii) $T' = (T - \{x, y\}) \cup \{a\}$, where T is a spanning tree of G containing both x and y.

Proof. Let T be a spanning tree of G, $x \in E(T)$ and $y \notin E(T)$. We prove that $T' = T - \{x\}$ is a spanning forest of G_{xy} by showing that it is maximal acyclic subgraph of G_{xy}.

On the contrary, let X be a cycle of G_{xy} contained in T'. Since $a \notin X$, X is a cycle of G containing none of x and y, and contained in $T - \{x\}$, a contradiction to the fact that T is a spanning tree of G. Thus T' is an acyclic subgraph of G_{xy}.

We show that it is maximal acyclic. Let $\alpha \in E(G_{xy}) - T'$. Suppose $\alpha \neq a$. We show that $T' \cup \{\alpha\}$ contains a cycle of G_{xy}. Let C_1 be the fundamental cycle of G contained in $T \cup \{\alpha\}$. Since $y \notin T$, and $\{x, y\}$ form a cut set, C_1 contains none of x and y. Therefore, it is a cycle of G_{xy} and $C_1 \subseteq (T - \{x\}) \cup \{\alpha\} = T' \cup \{\alpha\}$. Thus $(T - \{x\}) \cup \{\alpha\}$ contains a cycle...
of G_{xy}.

We complete the proof by showing that $(T - \{x\}) \cup \{a\}$ contains a cycle of G_{xy}. Let C be a cycle of G contained in $T \cup \{y\}$. Since $y \in C$ and there is no cycle of G containing exactly one of x and y; $x, y \in C$. Now $(C - \{x, y\}) \cup \{a\}$ is a cycle of G_{xy} that is contained in $(T - \{x\}) \cup \{a\}$. Therefore T' is a spanning forest of G_{xy}.

By the similar argument, one can prove that if $T' = T - \{y\}$, where T is a spanning tree of G containing y but not x, then T' is a spanning forest of G_{xy}.

Next, let T be a spanning tree of G such that $x, y \in T$. We show that $T' = (T - \{x, y\}) \cup \{a\}$ is an acyclic subgraph of G_{xy}. On the contrary, let X be a cycle of G_{xy} which is contained in T'. Since $a \in X$, and there is no cycle of G containing exactly one of x and y, there exists a cycle of G, say C, such that $x, y \in C$ and $X = (C - \{x, y\}) \cup \{a\}$. But then $C \subseteq T$, and this is a contradiction to the fact that T is a spanning tree of G. Hence T' must be acyclic subgraph of G_{xy}. Since $|E(T')| = |E(T)| - 1$, T' is a spanning forest of G_{xy}.

Conversely, suppose that T' is a spanning forest of G_{xy}. We consider the following cases:

Case (i) $a \notin T'$. We show that $T = T' \cup \{x\}$ is a spanning tree of G. Since $|E(T)| = |E(T')| + 1$, it is enough to prove that T is acyclic subgraph of G. On the contrary, assume that C is a cycle of G contained in T. Since C does not contain x and y, it is a cycle of G_{xy} that is contained in T', a contradiction. Thus T is a spanning tree of G. By the similar argument, one can prove that $T' \cup \{y\}$ is also a spanning tree of G.

Case (ii) $a \in T'$. We show that $T = (T' - \{a\}) \cup \{x, y\}$ is acyclic subgraph
of G. If not, then it contains a cycle of G. Let C be a cycle of G contained in T. Then C contains neither or both x and y. If C contains none of x and y, then it will be a cycle of G_{xy} that is contained in T', a contradiction. If $x, y \in C$, then $(C - \{x, y\}) \cup \{a\}$ is a cycle of G_{xy} which is contained in T', again a contradiction. Thus T is a spanning tree of G. \hfill \square

Theorem 3.3. Let T be a spanning tree of a graph G, $x, y \in E(G)$. Suppose $\{x, y\}$ does not form a cut set in G, $a \in E(G_{xy}) - E(G)$. Then T' is a spanning tree of G_{xy} if and only if one of the following conditions hold:

(i) $T' = T$, T is a spanning tree of G containing none of x and y.

(ii) $T' = (T - \{x\}) \cup \{a\}$ where T is a spanning tree of G containing x but not y and $(T - \{x\}) \cup \{y\}$ is not a spanning tree of G.

(iii) $T' = (T - \{y\}) \cup \{a\}$ where T is a spanning tree of G containing y but not x and $(T - \{y\}) \cup \{x\}$ is not a spanning tree of G.

Proof. Let T be a spanning tree of G such that $x, y \notin T$. We prove that T is a spanning tree of G_{xy} by showing that it is a maximal acyclic subgraph of G_{xy}.

On the contrary, suppose that C is a cycle of G_{xy} contained in T. Since $a \notin C$, C is a cycle of G such that $x, y \notin C$, a contradiction to the fact that T is a spanning tree of G. We conclude that T is acyclic subgraph of G_{xy}.

We show that for any $\alpha \in E(G_{xy}) - T$, $T \cup \{\alpha\}$ contains a cycle of G_{xy}. If $\alpha \neq a$, then $T \cup \{\alpha\}$ contains a cycle of G. Let C be a cycle of G contained in $T \cup \{\alpha\}$. Since $x, y \notin C$, C is a cycle of G_{xy} contained in $T \cup \{\alpha\}$. \hfill \square
Next, assume that $\alpha = a$, we show that $T \cup \{a\}$ contains a cycle of G_{xy}. $T \cup \{x\}$ as well as $T \cup \{y\}$ contains a cycle of G. Let C_1 and C_2 be the fundamental cycles of G, contained in $T \cup \{x\}$ and $T \cup \{y\}$, respectively. If $C_1 \cap C_2 \neq \phi$, then there exists a cycle of G, say C, such that $x, y \in C \subseteq C_1 \cup C_2$. Then $X = (C - \{x, y\}) \cup \{a\}$ is a cycle of G_{xy} which is contained in $T \cup \{a\}$. Next, let $C_1 \cap C_2 = \phi$. If there is a cycle of G, say C, containing either none, or both of x and y, such that $C \subseteq C_1 \cup C_2$, then C or $(C - \{x, y\}) \cup \{a\}$ is a cycle of G_{xy}, which is contained in $T \cup \{a\}$. If there is no such C, then $(C_1 \cup C_2 - \{x, y\}) \cup \{a\}$ is a cycle of G_{xy} contained in $T \cup \{a\}$. It means that $T \cup \{a\}$ contains a cycle of G_{xy}. Thus T is a spanning tree of G_{xy}.

Let T be a spanning tree of G containing exactly one of x and y, say x, such that $(T - \{x\}) \cup \{y\}$ is not a spanning tree of G. We show that $T' = (T - \{x\}) \cup \{a\}$ contains a cycle of G_{xy}.

Suppose that X is a cycle of G_{xy} contained in T'. Obviously $a \in X$. We consider the following cases:

Case (i) $X = (C - \{x, y\}) \cup \{a\}$ where C is a cycle of G containing x and y. Therefore, $C \subseteq T \cup \{y\}$. Since $y \in C$, we have $T \cup \{y\} = T_1 \cup \{x\}$, where $T_1 = (T - \{x\}) \cup \{y\}$ is a spanning tree of G, a contradiction.

Case (ii) $X = (C_1 \cup C_2 - \{x, y\}) \cup \{a\}$ where C_1 and C_2 are disjoint cycles of G such that $x \in C_1$, $y \in C_2$ and $C_1 \cup C_2$ does not contain any cycle of G containing either none, or both x and y. Now $(C_1 \cup C_2 - \{x, y\}) \cup \{a\} \subseteq (T - \{x\}) \cup \{a\}$ implies that $C_1 \subseteq T$, a contradiction. Therefore, $T' = (T - \{x\}) \cup \{a\}$ is an acyclic subgraph of G_{xy}. Since $|E(T')| = |E(T)|$, T' is a spanning tree of G_{xy}.

Conversely, suppose that T' is a spanning tree of G_{xy}. We consider the
following cases:

(i) $a \notin T'$. We prove that T' is a spanning tree of G containing none of x and y, by showing that it is acyclic in G. On the contrary, let C be a cycle of G, contained in T'. Since $x, y \notin C$, C is a cycle of G_{xy} contained in T', a contradiction to the fact that T' is a spanning tree of G_{xy}.

(ii) $a \in T'$. We define $D = T' - \{a\}$ and show that D is acyclic in G. If C is a cycle of G contained in D, then $x, y \notin C$ shows that C is a cycle of G_{xy} contained in T', a contradiction. Therefore, D is acyclic in G.

We show that exactly one of $D \cup \{x\}$ and $D \cup \{y\}$ is acyclic in G. We Consider the following two cases:

Case (i). Suppose that both contains a cycle of G, and let C_1, C_2 be the cycles of G such that $C_1 \subseteq D \cup \{x\}$ and $C_2 \subseteq D \cup \{y\}$. Obviously $x \in C_1$ and $y \in C_2$.

If $C_1 \cap C_2 \neq \emptyset$, then there exists a cycle of G, say C, such that $x, y \in C \subseteq C_1 \cup C_2$. Consequently, $(C - \{x, y\}) \cup \{a\}$ is a cycle of G_{xy} contained in T', a contradiction.

Next, assume that $C_1 \cap C_2 = \emptyset$. If there is a cycle of G, say C, containing either none, or both x and y, and contained in $C_1 \cup C_2$, then C or $(C - \{x, y\}) \cup \{a\}$ will be a cycle of G_{xy} contained in T'. Otherwise $(C_1 \cup C_2 - \{x, y\}) \cup \{a\}$ is a cycle of G_{xy} contained in T', again a contradiction. Therefore, one of $D \cup \{x\}$ and $D \cup \{y\}$ is acyclic in G.

Case (ii). Suppose that $D \cup \{x\}$ and $D \cup \{y\}$ are both acyclic in G. We show that $D \cup \{x, y\}$ is also acyclic. If not, assume that C is a cycle of G contained in $D \cup \{x, y\}$. Since $D \cup \{x\}$ and $D \cup \{y\}$ are acyclic, $x, y \in C$. Then $(C - \{x, y\}) \cup \{a\}$ is a cycle of G_{xy} and contained in T', a
contradiction. Thus exactly one of $D \cup \{x\}$ and $D \cup \{y\}$ is acyclic.

Let $D \cup \{x\}$ be acyclic while $D \cup \{y\}$ contains a cycle of G. Then by the first part of the proof, $T = D \cup \{x\} = (T' - \{a\}) \cup \{x\}$ is a spanning tree of G. In fact, $T' = (T - \{x\}) \cup \{a\}$ is a spanning tree of G such that $(T' - \{x\}) \cup \{y\}$ is not spanning tree. This completes the proof of the theorem. \hfill \Box

4. Bipartiteness of G_{xy}

If the graph G is bipartite then G_{xy} may not be bipartite for some edges x, y of G. In the following theorem, we provide the condition under which G_{xy} remains bipartite if G is bipartite.

Theorem 4.1. Let G be a graph and $x, y \in E(G)$, $a \in E(G_{xy}) - E(G)$ and suppose G is bipartite. Then G_{xy} is bipartite if and only if x or y is a bridge in G.

Proof. Suppose G_{xy} is bipartite. Assume that x and y are non-bridges. Let C_x, C_y be cycles of G containing x, y respectively. If $C_x \cap C_y = \phi$, then $C = (C_x \cup C_y) - \{x, y\} \cup \{a\}$ is a cycle of G_{xy} containing a. If $C_x \cap C_y \neq \phi$, then by Lemma 2.1, there is a cycle of G containing both x and y. Hence $C = C_1 - \{x, y\} \cup \{a\}$ is a cycle in G_{xy}. Since G is bipartite, each cycle of G is of even size. Hence each cycle of G_{xy} containing a is of odd size. Hence G_{xy} is not bipartite, a contradiction.

Conversely, suppose that x or y is a bridge. Then no cycle of G_{xy} contains a. Hence each cycle of G_{xy} is a cycle of G. This implies that G_{xy} is bipartite. \hfill \Box
5. Applications

Splitting off operation and the connectedness

The Splitting off operation on a connected graph may not yield a connected graph. The graph G and the corresponding graph G_{xy} of the Figure 2 exhibit this fact.

![Figure 2](image)

We explore the conditions for a graph G for which G_{xy} is connected. The connectedness of G_{xy} depends on the choice of the pairs $\{x, y\}$ of the edges in G.

In the following Lemma we provide conditions for splitting off operation to preserve the connectedness of the graph G.

The Splitting Lemma 5.1. Let G be a connected bridgeless graph. Suppose $v \in V(G)$ with $d(v) > 3$ and e_1, e_2, e_3 are the edges incident at v. Form the graphs G_{12} and G_{13} by applying the splitting off operation using the pairs e_1, e_2 and e_1, e_3, respectively and assume that e_1 and e_3 belong to different blocks if v is a cut vertex of G. Then either G_{12} or G_{13} is connected and bridgeless. In particular, if v is a cut vertex, then G_{13} has this property. Finally, if $B \subseteq G$ is a block and e_1, e_2, e_3 are edges in B then both G_{12} and G_{13} are connected.
Figure 3 illustrates the Splitting Lemma explicitly. The result is important and can be used as a useful tool in graph theory.

The splitting off operation on a 2-connected graph, in general, may not yield a 2-connected graph.

![Image](image1.png)
Figure 3(a) v is a cut vertex.

![Image](image2.png)
Figure 3(b) G is a block.

Figure 3: Illustration of the Splitting Lemma.

Example 5.2 exhibits the fact that even if the given graph is 3-connected, the splitting off operation on it may not produce a 2-connected graph.

Example 5.2. Consider the complete graph K_4 on 4 vertices. The graph

![Image](image3.png)
Figure 4

$(K_4)_{12}$ is not 2-connected. In fact, the element 6 is a bridge in it. Further,
the set C' of cycles in the definition of $(K_4)_{12}$ consists of just members of C_0 and C_1. We provide a sufficient condition for G_{xy} to be 2-connected.

Theorem 5.3. Let G be a 2-connected graph and $\{x, y\}$ be a pair of edges of G. If $C_2 \neq \phi$ then G_{xy} is 2-connected.

Proof. Assume that $C_2 \neq \phi$ and let $Z = ((C_1 \cup C_2) - \{x, y\}) \cup \{a\}$ be a member of C_2. Suppose e and f are two arbitrary edges of G_{xy}. We show that there is a cycle of G_{xy} containing both e and f. We consider the following two cases.

Case (i). Neither of e and f is a. Then $e, f \in E(G)$. Since G is 2-connected there is a cycle C of G containing both the edges e and f. If C contains neither of x and y then it is also a cycle of G_{xy} and we are through. Further, if C contains x and y both then $(C - \{x, y\}) \cup \{a\}$ is the cycle of G_{xy} containing e and f.

Now suppose that $x \in C$ but $y \notin C$. We show that for every edge z in the set $E(C \cup C_1)$ and the edge x there is a cycle of G_{xy} containing a and z. If z is an edge of C_1 then $((C_1 \cup C_2) - \{x, y\}) \cup \{a\}$ is the desired cycle of G_{xy}. Assume that $z \in E(C) - E(C_1)$. Since $x \in E(C_1) \cap E(C)$, there is a cycle C_3 of G such that $z \in C_3 \subseteq (C \cup C_1)$ and $x \notin C_3$. The cycle C_3 contains neither of the edges x and y therefore it is a cycle of G_{xy}. Further, it contains at least one element of C_1 say w. Then G_{xy} has the cycle Z containing the edges w and a and also the cycle C_3 containing the edges w and z. Consequently G_{xy} has a cycle containing z and a as desired. Now e and f are the edges of $E(C \cup C_1)$, therefore G_{xy} has cycles containing the pairs $\{e, a\}$ and $\{f, a\}$. This implies that G_{xy} has a cycle containing the edges e and f.

30
Case (ii). Suppose one of e and f is a, say $e = a$. Then we want to show that there is a cycle of G_{xy} containing a and f. But this follows from the proof of Case (i).

In the following Theorem, we characterize Eulerian graphs in terms of splitting off operation. First we prove the following lemma.

Lemma 5.4. Let G be a graph with an edge set $E(G)$ and $x, y \in E(G)$. Suppose that G_{xy} is connected. Then G is Eulerian if and only if G_{xy} is Eulerian.

Proof. Suppose G is an Eulerian graph. Then each vertex of G has even degree. Let the edges x and y be incident at the vertex v of G. For convenience, let $vv_1 = x$, $vv'_1 = y$. After splitting off operation using the pair $\{x, y\}$, the degree of vertex v in G_{xy} decreases by two and remains even. Degrees of v_1 and v'_1 remain same in G_{xy}. The degrees of the other vertices in G and also in G_{xy} are unaffected by the application of the operation. Also it is given that G_{xy} is connected. Hence G_{xy} is Eulerian.

Conversely, suppose G_{xy} is an Eulerian graph. So, each vertex of G_{xy} is of even degree. Now, subdivide the edge $v_1v'_1$ by introducing the new vertex v'' on it. Take the newly created edges v_1v'' and $v''v'_1$ as x and y, respectively. The degree of v'' will be two, an even number. Then, identify v'' and v to get a graph G. The degrees of all the vertices in G are even. Then G is eulerian and the splitting off operation on it with respect to the pair $\{x, y\}$ gives the graph G_{xy}.

Theorem 5.5. A graph G is Eulerian if and only if G can be transformed through repeated applications of splitting off procedure into a graph which is a cycle.
Proof. Suppose G is an Eulerian graph with an edge set E. Then, through a sequence of splitting off operation performed on vertices of degree exceeding 2 in such a way that at each step the resulting graph G_{xy} is still connected by Splitting Lemma [4], we arrive to a graph which is a cycle.

Conversely, suppose that G can be transformed into a cycle C through repeated applications of the splitting off procedure. Let the sequence of graphs involved in this process be $G = G_0, G_1, G_2, ..., G_i, G_{i+1}, ... , G_n = C$ where G_{i+1} is obtained from G_i by performing a splitting off operation on a vertex of G_i of degree greater than 2. It is now enough to show that if G_i is Eulerian then G_{i-1} is Eulerian but this follows from Lemma 5.4. Now, $G_n = C$ is Eulerian, therefore, G_{n-1} is Eulerian. Continuing in this way, we conclude that $G_{n-2}, G_{n-3}, ... , G_0 = G$ is Eulerian. This completes the proof of the theorem. \square

* * * * * * *