CHAPTER 6

A HYBRID FRAMEWORK FOR ELEPHANT INTRUSION DETECTION SYSTEM USING ELEPHANT VOCALIZATION

6.1 INTRODUCTION

In this chapter, a method for detecting and tracking elephants along the forest border areas using the vocal communication of elephants is presented. Two approaches are used: one to find the spectral energy threshold and the other to determine highest pitch frequency produced by elephants. A threshold is identified for the two approaches; once the elephant vocal signals crosses the limit an alert is sent to the forest officials notifying them about the elephant intrusion. Some of the practical issues include the difficulty of acquiring continuous vocal data and distinguishing elephant sound from other sounds in the forest environment.

6.2 BACKGROUND

To explore the area of elephant vocalization, in this research work the recordings of elephant call sounds are used to determine the movement of elephants in the forest border areas. Elephants use vocalization to communicate over short and long distances. The elephant vocalization contains abundance of information about elephant social living. Asian elephant calls can be categorized in to 4 basic types Trumpet, Roar, Chirp, and Rumble (Nair et al 2009). The call type and frequency range used by
elephants are given in Table 6.1. Call signal frequency vary from 5 Hz to 10,000 Hz which includes harmonics also. Out of the 258 measurable elephant calls described by (Nair et al., 2009), close to 30% are trumpets, 22% are roars, 26% are ‘chirps’ (squeaks) and 22% are rumbles.

Table 6.1 Call Type and frequency ranges of asian elephants

<table>
<thead>
<tr>
<th>Call Type</th>
<th>Frequency range(Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trumpet</td>
<td>405–5879</td>
</tr>
<tr>
<td>Roar</td>
<td>305–6150</td>
</tr>
<tr>
<td>Chirp (Squeak/Squeal)</td>
<td>313–3370</td>
</tr>
<tr>
<td>Rumble</td>
<td>10–173</td>
</tr>
</tbody>
</table>

Elephant uses calls in the context of play, disturbances, presence of other species or vehicles, interactions within herds and during encounters with other species. Rumbling is used as an information such as let’s go, contact calling, and greeting. Elephant vocalization can be established with amplitudes of 112 dB at 1 m and 46 dB at 2,048 m (www.elephantvoices.org).

6.3 ELEPHANT SIGNAL DETECTION SYSTEM

Obtaining high quality, continuous recordings of elephant vocalization in the wild is a difficult task. The recordings are done using a FM system unit which contains a FM transmitter and a receiver at the base station. The audio transmitter is placed in certain pockets where elephants enter into human living areas from the forest. The FM transmitter is battery driven; the device is tuned in such a way that it covers an average distance of about 20 meters with a frequency range of 102.3 MHz. The vocal signal is captured via an audio mike, which converts any audio signal in to electrical variations and is amplified with gain of 20 times the input signal. Sources of noise like wind
and vehicle were noted for filtering during data analysis. The audio input is given to PC via an audio jack for elephant vocalization analysis. A custom-written program in Matlab is used to detect the audio features of elephant calls.

Two approaches are employed for the detection of elephant vocal communication in the forest border areas.

1. Spectral Energy Thresholding
2. Pitch Frequency Determination

In the first method, the received elephant sound signals are recorded as a .wav file in the PC and updated in a directory every 5 seconds; the recorded elephant vocal signal sample is shown in Figure 6.1.

![Figure 6.1 Elephant sound recorded sample](image.png)

The wav file is converted to frequency vectors by FFT and filtered by bandpass 8th order Butterworth filter and applied for spectral energy thresholding. To estimate the spectral energy threshold the essential
bandwidth of the power spectrum is computed using a Hanning window (40 ms). The frequency that corresponds to the strongest magnitude is determined. The highest power spectra magnitude obtained is set as the threshold value.

The process proceeds to the next step to calculate the highest pitch frequency. The lowest frequency of the autocorrelation of each channel gives an indication of the fundamental frequency component present in that channel for the particular segment. Autocorrelation performed on each of the channels with a window size of 40 ms is used, corresponding to N=128 samples in a signal sampled at 3 kHz. The largest positive peak in the summed autocorrelation is selected, and the corresponding pitch is calculated and the time of pitch detection is noted. The pitch frequency threshold is determined in this work to discriminate other animal sounds present in the wilderness. Whenever both the spectral energy and pitch frequency crosses certain threshold values an early warning is sent to the forest officials to take necessary actions on approaching elephants.

In the first step preprocessing of audio signal is done by filtering the unwanted signals present in the forest, such as sounds of birds, insects, trees and wind. The best-known filter approximation is the Butterworth or maximally-flat response approximation. It exhibits a nearly flat pass band with no ripple. The Butterworth filter of order n is described by the magnitude square of its frequency response

$$[H(\omega)]^2 = \frac{1}{1+(\frac{\omega}{\omega_0})^{2n}}$$

(6.1)

where n is the order of the filter, and can be any positive whole number (1, 2, 3, . . .), and \(\omega_0\) is the -3 dB frequency of the filter (Thede 2005). The transfer function of \(H_b(s)\) for the normalized (De Silva & Kasun de Zoysa, 2009) Butterworth filter of order 8 is
\[H_0(s) = \frac{1}{(s^2+0.309028+1)(s^2+1.1118+1)(s^2+1.66648+1)(s^2+1.87948+1)} \] (6.2)

Let \(H_{LP}(s) \) represent a low pass filter with cutoff frequency of \(\omega_c \) and the transfer function is given by \(s \rightarrow s/\omega_c \). The bandpass filter with transfer function \(H_{BP}(s) \) is given by

\[
H_{BP}(s) = H_{LP}(s) \left[s \rightarrow (s^2 + \omega_l \omega_u)/(s(\omega_u - \omega_l)) \right]
\] (6.3)

where \(\omega_l \) and \(\omega_u \) are the lower and upper cutoff frequencies for the bandpass filter.

6.4 SPECTRAL ENERGY THRESHOLDING

The elephant signal has a unique spectrum associated with it. These quantities are typically described in the time domain and for every function of time, an equivalent frequency domain function can be found that specifically describes the frequency-component in the frequency spectrum. A framework is established in which elephant signals can be categorized in frequency domain based on the analysis of

- Pattern of energy over the frequency bands
- Standard deviation of such energy distribution.

The first metric reveals the energy distribution of the flows over frequencies. To determine the energy over bands of recorded elephant signal the FFT is performed to determine the frequency component for the raw data. It allows to efficiently estimate the frequency component in data from a discrete set of values sampled at a fixed rate. Taking the square of the magnitude of spectrum of elephant signal we obtain the energy in the signal. In other words, it shows at which frequencies variations are strong and at which frequencies variations are weak. The unit of PSD is energy per
frequency and we obtain energy within a specific frequency range by integrating PSD within the frequency range. Computation of PSD is done directly by computing autocorrelation function (Stoica & Moses 2005). The autocorrelation of a real, stationary signal $x(t)$ is given by

$$R_x(\tau) = \mathbb{E}[x(t)x(t + \tau)]$$ \hspace{1cm} (6.4)$$

The Fourier transform of $R_x(\tau)$ is called the Power Spectral Density (PSD) $S_x(f)$,

$$S_x(f) = \int_{-\infty}^{\infty} R_x(\tau) e^{-2\pi if\tau} d\tau$$ \hspace{1cm} (6.5)$$

S_x is interpreted as units of “power” per unit frequency. The second metric describes statistically whether one type of flow may be biased to certain special frequencies. The expression used to find the spectral threshold is given by

$$\lambda = \sqrt{2\log(n) \ast std(S_x(f))}$$ \hspace{1cm} (6.6)$$

where n is the frequency vector length. The Standard deviation of such spectral energy distribution is multiplied with the square root of log value of frequency vectors. The result obtained is the threshold to discriminate elephant vocal signal with that of other sounds found in the forest environment.

6.5 PITCH FREQUENCY DETERMINATION

Natural sounds are a composition of a fundamental frequency with a set of harmonics which occur at near integer multiples of that fundamental component. The frequency that interprets as the *pitch* of a sound is this fundamental frequency (Cheveigné & Kawahara 2002). Pitch is largely
responsible for inflections in elephant calls used for communicating and expressing itself. These inflections also play a role in allowing us to consistently identify an elephant. Pitch is a perceptive quality that describes the highness or lowness of a sound. For a harmonic signal this is the lowest frequency in the harmonic series. The fundamental frequency can be deduced from the other frequency components provided that they are integer multiples of f_0 (Larson & Maddox 2005). This work attempts to develop a pitch tracking and detecting method to sense the movement of elephants in the forest border areas. Although different methods have been proposed for detecting pitch, the autocorrelation pitch detector is still one of the most robust and reliable pitch detectors (Tan & Karmjanadecha, 2003). The autocorrelation computation is made directly on the waveform and is fairly straightforward in time consumption. For a non-stationary signal, such as an elephant voice signal the changes are abrupt in time and aperiodic. Thus, it is reasonable to define a short-time autocorrelation function, which operates on short segments of the elephant signal given by,

$$R_x(\tau) = \frac{1}{N} \sum_{n=0}^{N-1} [x(n+l)w(n)][x(n+l+\tau)w(n+\tau)]$$

(6.7)

where $w(n)$ is an appropriate window for analysis, N is the section length being analyzed, l is the number of signal samples used in the computation of autocorrelation points. 40 ms window size and 200 samples at a 10 kHz sampling rate per channel (Ellis & Lee, 2012) are taken as parameters. The input elephant audio signal is expanded into 128 subband signals $x_l[n], l = 1: : : 128$. The amplitude of the first positive peak in the correlogram of each channel gives an indication of the fundamental frequency component present in that channel and the maximum amplitude of the positive peaks in the correlogram gives an indication of the amount of noise present in the channel for the analyzed segment. A summed correlogram is calculated by adding all the autocorrelations of the selected channels together, forming large peaks
where peaks in individual channels coincide. The largest positive peak in the summed correlogram is selected, and the corresponding pitch is determined. The number of lag steps at which the first positive peak is located can be used to determine the pitch of the input signal, \(P = \frac{F_s}{s} \) with \(F_s \) as the sampling frequency of the input signal and \(s \) the number of lag steps before the first positive peak occurs.

6.6 SPECTROGRAM

A spectrogram is a representation of how the frequency content of a signal changes with time (Sen & Dengyun 2010). During regions of silence, and at frequency regions where there is little energy, the spectrogram appears white; dark regions indicate areas of energy - caused for example by vocal fold closures, harmonics, or formant vibration in a speech signal. The spectrogram is built from a sequence of spectra by stacking them together in time and by compressing the amplitude axis into a 'contour map'. Wide-band spectrograms are convenient for investigating characteristics of the vocal tract filter: they highlight the vocal tract resonances by showing how they continue to vibrate after a vocal fold pulse has passed through. Spectrograms are used to identify phonetic sounds, to analyse the cries of animals, and in the fields of music, sonar/radar, speech processing, etc. Spectrograms are usually calculated from the time signal using the short-time Fourier transform (STFT). The short-time Fourier transform (STFT) is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time (Idicula et al 2013) and is determined by

\[
STFT[x[n]] = \sum_{\omega=-\infty}^{\omega=\infty} x[n] e^{-i\omega n} \]

where \(x[n] \) is the input audio signal and \(w[n-m] \) is the hamming window function. Spectrogram is used in this work to analyze elephant calls and to
demonstrate the difference in structure of elephant call with that of other animal calls.

6.7 RESULTS

The field observations were carried out in the forest border areas in Mettupalayam which host an elephant camp where 36 temple elephants and 18 kumki elephants were trained during the period of December 2013 to February 2014 (Figure 6.2). The elephant calls were recorded for the vocalization produced by three different Asian elephant one male and two females. Recordings of vocalizations were made using Audacity voice recorder software. Recordings were done using an audio microphone with transmitter and a receiver connected to the PC via an audio jack pin.

![Figure 6.2 Field testing](image)

The elephants used in the work are trained elephants. When the mahout gave a command to make calls, the elephants produced various types of sounds. These sounds were recorded in the PC for further analysis. Automated acoustic analysis was performed on vocalizations from elephant
sounds. Upon reception of calls the software developed runs to detect if an elephant sound is made. For all measurements, vocalizations showed clear fundamental frequencies (pitch) along with the spectral magnitude. The algorithm is developed in such a way once the elephant call crosses the predefined thresholds an early warning in form of GSM message is sent to the forest officials. To test for various call types we used the recorded elephant sample audio from the web site [www.elephantvoices.org].

6.7.1 Spectrogram Analysis

In this work the elephant calls were analyzed by visualizing using spectrogram. The spectrogram of other sounds were also analyzed. Spectrograms of calls were first annotated manually on Matlab and later automatically extracted according to labeled segment boundaries. Sounds can also be represented visually using spectrograms. Spectrograms have frequency on the y-axis, time on the x-axis and represent loudness of sound by the darkness of the display. Figure 6.3 shows a spectrogram of a typical elephant trumpet.

![Figure 6.3 Spectrogram of an elephant trumpet](image)
The elephant produced trumpet at 14 Khz as shown in the spectrogram. The harmonic nature is shown in the spectrogram. The elephant trumpet produced twenty harmonics occurring from 0.1 s to 2.4s. The spectrogram appears after 2.5s and up to 4.5s is the mirror image of the spectrogram.

![Figure 6.4 Spectrogram of an elephant roar](image)

Figure 6.4 Spectrogram of an elephant roar

The elephant roar spectrogram was obtained at 9 KHz frequency. The elephant roar produced twelve harmonics occurring from 0.1 s to 2.4s and is shown in Figure 6.4.

Figure 6.5 shows a spectrogram for a Monkey signal. The spectrogram was obtained at 18 KHz of frequency. More harmonics occurred and each spectral content occurred for short period of time. The largest time of signal identified is only of 0.6 seconds for the monkey signal.
Figure 6.5 Spectrogram of a monkey

Figure 6.6 Spectrogram of a bird chirp

Figure 6.6 shows a spectrogram for a bird chirp. The spectrogram obtained at 5 KHz of frequency. More harmonics were produced. Single bird spectral content occurred for 0.1 seconds of time. For a sound period of 2 seconds the bird produced 20 pitch variations.
From the above spectrogram results it is evident that the total harmonics produced and time of each harmonic for elephant vocal sound differs from the other species.

6.7.2 Estimating Spectral Energy Thresholding

To determine the energy over the band power spectrum of the FFT is calculated for the raw elephant signal data. The FFT allows to efficiently estimate component frequencies in data from a discrete set of values sampled at a fixed rate. A FFT spectrum is a relationship typically represented by a plot of the power magnitude against frequency. The power spectrum of the elephant trumpet signal is shown in Figure 6.7. From the fig it is observed that the dominant frequency components of the signal lie in the range of 650 to 720 Hz with its peak at 687.3137 Hz at 3mW of power.

Figure 6.7 Power spectrum of an elephant trumpet
Figure 6.8 Power spectrum of an elephant rumble

The power spectrum of the elephant rumbles shown in Figure 6.8 depicts that the dominant frequency components of the signal lie in the range of 10 to 90 Hz with its peak at 32.0029 Hz at 0.8mW of power.

Figure 6.9 Power spectrum of a tiger
The power spectrum of a tiger sound is shown in Fig. 6.9 in which the highest spectral energy magnitude is obtained with 3.8\(\mu\)w in 236.4181 Hz. The highest magnitude value is determined for each frequency vector.

![Power Spectrum of a Bird Chirp](image)

Figure 6.10 Power spectrum of a bird chirp

The power spectrum of bird chirp is obtained and shown in Figure 6.10. The first highest spectral energy is obtained with 3.3mW at 1750Hz. The estimated highest magnitude value is determined for each frequency vector. To determine the spectral energy threshold equation (6.6) is used which determines the variations in energy available in the given audio signal. The estimated power spectrum magnitude values for different elephant sounds are depicted in Figure 6.11. The graph shows that most of the elephant calls produced energy threshold above 1.0 and some of them were below 1.0. Most of the rumble, chirp and roar produced lesser threshold as they are made for short distance communication among the herds.
Figure 6.11 Estimated power spectrum threshold for elephant calls

The vocal signals of other species were also tested using this approach. The other type of signals tested were bear, tiger, lion, monkey, truck passing, human talk etc. These sound signals were got from websites and some were recorded live. The estimate of spectral energy of other signals is plotted and shown in Figure 6.12.

Figure 6.12 Estimated power spectrum threshold for other sounds
The spectral energy produced by cow and human talk have threshold above 1.0. It is difficult to determine elephant signal in the presence of other signals using power spectrum. So using only power spectra threshold the system was not able to detect elephants. So the fundamental frequency component i.e. the pitch as a feature vector to discriminate elephants from that of other animals was used in this work which is explained in the next section.

6.7.3 Tracking Pitch Frequency

This work attempts to develop a pitch tracking and detecting method to sense the movement of elephants in the forest border areas. The elephant vocal signal samples were used to estimate the pitch frequency using the algorithm. The pitch estimates were calculated from the fundamental frequency in each of the channels. All pitch contour measurements obtained on calls and call segments showed clear fo frequencies in this approach. An elephant trumpet of duration 3 seconds was given to the pitch tracker which detected a pitch frequency of 500.3314Hz at 1.6319s as shown in Figure 6.13.

![Pitch Tracking for an Elephant Trumpet](image)

Figure 6.13 Pitch Tracking for an Elephant Trumpet
The system was tested by giving real time recorded multi call types produced by an elephant. The pitch frequency for the call type occurred at 0.87583s. The tracked pitch frequency was found to be 563.2706 Hz as shown in Fig 6.14.

Figure 6.14 Pitch Tracking for an Elephant Multiple Call Type

The second segment of elephant calls were also tested in this work which showed frequencies below 130 Hz and resembled rumbles. However, principal components of fundamental frequency distinguished these ‘rumbles’ from growls. An elephant rumble of duration 2 seconds was given to the pitch tracker and the pitch occurred at 1.1726s with highest pitch tracked at a frequency of 41.4827Hz as shown in Figure 6.15.
Figure 6.15 Pitch Tracking for a Rumble

An elephant rumble of duration 2 seconds was given to the pitch tracker and an elephant rumble pitch occurred at 4.2921s. Highest pitch was tracked at a frequency of 116.6795Hz as shown in Figure 6.16.

Figure 6.16 Pitch Tracking for a Recorded Rumble

The estimated various rumble pitch frequencies of elephants is depicted in Figure 6.17 in which we can see the rumble frequencies of infrasonic range is available from 30 Hz to 130 Hz.
A comparison of obtained pitch frequencies for different call types of elephants is done and is plotted in Figure 6.18. It was observed that most of the call types produced sounds with fundamental frequency above 400 Hz and less than 130 Hz. The sounds produced below 130 Hz were elephant call type growl and rumbles which are low frequency call signals of elephants.
Forest borders have got typical living creatures and these creatures produce sounds for their communication. Such type of sounds will also be taken as an input to the system and can produce false alarms. Filters cannot be implemented for different frequencies. To solve this issue we tested the algorithm developed by giving various animal sounds and other typical sounds present in the forest borders. The sound samples were given to the software developed which estimates the pitch frequency. A pitch frequency comparison was made for different sound signals as shown below.

![Figure 6.19. Pitch Frequency Tracking for Cow](image)

The pitch frequency obtained for Cow is shown in Figure 6.19. Pitch frequency for Cow occurred at 1.18s. Highest pitch was tracked at a frequency of 129.8164 Hz. All the others are the harmonics in the pitch plot.
The pitch frequency obtained for Tiger is shown in Figure 6.20. Pitch frequency for Tiger occurred at 0.56018s. Highest pitch was tracked at a frequency of 236.4181 Hz. All the others are the harmonics in the pitch plot.

Figure 6.20. Pitch frequency tracking for tiger

Figure 6.21. Estimation of pitch frequency for other sound types
A comparison was made for pitch frequency of other sound types and is shown in Figure 6.21. It was observed that most of the call types produced sounds with fundamental frequency below 400 Hz. Some of the sounds also produced pitch above 400 Hz which was undesirable for our detection process and produced false alarms. But sounds of birds and wolf produced higher frequency than elephant pitch frequencies. And also weak elephant rumbles were not detected when their harmonic structure was lost, and false alarms increased when the pitch of overlapping rumbles had to be detected. So it was a challenge in discriminating the elephant signals and other animal sounds. All these signals contain the fundamental frequency and the harmonics. We tested the system in Mettupalayam elephant camp, Coimbatore, India, and the system detected only the elephant sound signal.

6.8 HYBRID DETECTION PARAMETERS

- From the above two methods it is decided to fix thresholds for both the spectral energy and pitch frequency. These two parameters combined together to discriminate elephant sound signal from that of other animals in the presence of forest noises such as sounds of birds, insects, trees and wind.

- The spectral energy threshold was set to 1.0 and pitch frequency threshold was set to 400 Hz and 130 Hz for detecting elephants. Frequency in the range 400Hz to 800 Hz were used to detect elephant call types like trumpet and roar. The frequency below 130 Hz was used to detect elephant call type like rumbles.

- When the received audio signal crossed both the thresholds the system will decide it is an elephant signal. Otherwise it will not take a decision. This hybrid approach makes the
system effective in detecting elephant vocal signals. This approach also reduces the false alarm.

6.9 ESDS GRAPHICAL USER INTERFACE

A GUI has been developed for the elephant detection system and is shown in Figure 6.22. This is an automated system which records audio signal every 5 seconds and tests for elephant signal. The elephant vocal signal is detected using the hybrid approach. Once the signal received that of an elephant, an early warning in form of GSM message is sent to the forest officials.

![GUI for elephant sound detection system](image)

Figure 6.22 GUI for elephant sound detection system

6.10 CONCLUSION

Elephants use vocalization for both long and short distance communication. In this work, the vocal repertoire of wild Asian elephants in southern India was examined. Elephants produce four types of calls namely, trumpets, chirps, roars, and rumbles, based on quantitative analyses of their
spectral and temporal features. These calls were made by elephants in the context of play, distress, disturbance, aggression, confusion, alarm and contact calling within and among herds. The spectral and temporal features of the four call types were used as a feature for detecting elephant even in the presence of other animals and noise present in the forest. Two spectral features, spectral energy thresholding and pitch frequency detection were used in this work in discriminating and detecting the presence of elephants. The analyses shown for the two methods demonstrate that both peak spectral magnitude and peak frequency are used as parameters to discriminate elephant sound signal from that of other sounds of animals, vehicles etc. Based on the results presented for both the methods the peak spectral magnitude was set to 1.0 and pitch frequency set from 400 Hz to 800Hz bandwidth for detecting elephants. The algorithm has been developed such that it also detects low frequency rumbles in the range of 20 to 130 Hz. In conclusion, the analysis provides insights to protect elephants from human activities and reduces the work effort of forest officials and provides solution for human elephant conflict. The system is completely automated; the strength of this approach stems from the ability to discriminate elephants which is the key to avoiding false alarms.