APPENDIX 1

MODEL CALCULATION OF VARIOUS CODES

A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007)

1. Based on Initiation of Yielding:

 Effective yield moment, \(M_n = S_e \times F_y \)

 \(S_e \) = Elastic section modulus of effective section calculated relative to extreme compression or tension fiber at \(F_y \)

 \(F_y \) = Yield stress

2. Based on Lateral Torsional Buckling Strength:

 \(M_n = S_c \times F_c \)

 \(S_c \) = Elastic section modulus of effective section calculated relative to extreme compression fiber at \(F_c \)

 \(F_c \) shall be determined as follows:

 - \(F_c > 2.78F_y \), no lateral buckling at bending moments less than or equal to \(M_y \)
 - \(2.78F_y > F_c > 0.56F_y \) \[F_c = \frac{10}{9} F_y \left(1 - \frac{10F_c}{36F_e} \right) \]
 - \(F_c < 0.56F_y \) \[F_c = F_e \]

 where, \(F_e = \frac{C_d \pi F_y}{S(K_s l_y)} \)
C_b is conservatively taken as unity for all cases

d - Depth of section

I_{yc} - Moment of inertia of compression portion of section about centroidal axis of entire section parallel to web, using full unreduced section.

\(I_{yc} = \frac{I_{yc}}{2} \)

S_E - Elastic section modulus of full unreduced section relative to extreme compression fiber

K_y - Effective length factor for bending about y axis

L_y - Unbraced length of member for bending about y axis

\(F_e = \frac{GJ\Delta}{S_E \sqrt{\sigma_{yc} G_1}} \)

A = area of the full cross-section

\(r_o = \) polar radius of gyration of the cross section about the shear centre = \(\sqrt{\frac{I_{xc}}{\rho_x^2} + \frac{I_{yc}}{\rho_y^2}} \)

\(r_x, r_y = \) radii of gyration of the cross section about the x- and y-axes respectively

\(x_o = \) distance from shear centre to centroidal along principal x-axis taken as negative.

\(\sigma_{yc} = \frac{\pi^2 E}{(\rho_x \rho_y)^2} \)

\(\sigma_t = \frac{GJ}{M_{nS}^2} \left(1 + \frac{\pi^2 C_w}{GJ (K_t + 4)} \right) \)

E = Modulus of elasticity of steel

G = Shear modulus

J = Saint-Venant torsion constant for a cross section

\(C_w = \) Torsional warping constant of cross section

Kt = Effective length factors for twisting
Lt = Unbraced length of member for twisting.

Ky = Effective length factors for bending about y-axis.

Ly = Unbraced length of member for bending about y-axis.

1. **Based on Distortional Buckling Strength:** Distortional Buckling Strength (moment of resistance) M_n is given by,

For $\lambda_d \leq 0.673$

$$M_n = M_y$$

For $\lambda_d > 0.673$

$$M_n = \left(1 - 0.22 \left(\frac{M_{crd}}{M_y}\right)^{0.5}\right) \left(\frac{M_{crd}}{M_y}\right)^{0.5} M_y$$

$$\lambda_d = \frac{M_y}{M_{crd}}$$

$M_y = S_{fy} x F_y$

Where, S_{fy} = Elastic section modulus of full unreduced section relative to extreme fiber in first yield.

$M_{crd} = S_f \times F_d$

$S_d = $ Elastic section modulus of full unreduced section relative to extreme compression fiber.

F_d = Elastic distortional buckling stress

$$F_d = \beta K_{d} \frac{\pi^2}{12(1+\mu^2)} \left(\frac{h_d}{t}\right)^2$$

$$K_d = 0.5 \leq 0.6 \left(\frac{b_0 D\sin \theta}{h_d}\right)^{0.7} \leq 8.0$$

β = A value accounting for moment gradient, which is permitted to be conservatively taken as 1.0

E = Modulus of elasticity

t = Base steel thickness

μ = Poisson’s ratio

b_0 - Out-to-out flange width

D - Out-to-out lip dimension
θ - Lip angle

h_o - Out-to-out web depth

A1.2 NUMERICAL EXAMPLE FOR SPECIMEN TCDW-2000-200-100-1 AS PER AISI S100: 2007

1. Based on Yield Strength

Effective yield moment, \(M_n = S_c \times F_y \)

Effective section modulus, \(S_c = 55877.2186 \text{mm}^3 \)

Yield stress, \(F_c = 247 \text{N/mm}^2 \)

\[M_n = 55877.2186 \times 247 \]

\[M_n = 13.80 \times 10^6 \text{N.mm} \]

2. Lateral - Torsional Buckling Strength

\[M_n = S_c \times F_c \]

\[S_c = 57146.53438 \text{mm}^3 \]

\[F_e = \frac{C_h \pi d L c}{S(K_h K_c)} = \frac{1^{14}2.11^{10}62.00^{3}339894.582}{57146.53438(1^{14}2000)^2} \]

\[F_e = 587.494 \text{N/mm}^2 \]

\[F_c = \frac{C_h A}{S_f \sqrt{\sigma_y G_i}} = \frac{1^{4}98 \times 46^{5}59.998}{\sqrt{441.75^{5}507.98}} \]

\[F_c = 620.08 \text{N/mm}^2 \]

\[2.78F_y > F_c > 0.56F_y F_c = \frac{10}{9} F_y \left(1 - \frac{10F_c}{36F_y}\right) \]

\[= \frac{10}{9} \times 247 \left(1 - \frac{104247}{36 \times 620.08}\right) \]

\[= 244.89 \text{N/mm}^2 \]

\[M_n = S_c \times F_c \]

\[= 55877.2186 \times 244.89 = 13.69 \times 10^6 \text{N.mm} \]
3. **Distortional Buckling Strength**

\[
F_d = \left[K_d \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{h_o} \right)^2 \right]
\]

\[
K_d = 0.5 \leq 0.6 \left(\frac{b_D \sin \theta}{b_0} \right)^{0.7} \leq 8.0
\]

\[
L_{cr} = 1.2 h_o \left(\frac{b_D \sin \theta}{b_0} \right)^{0.6} \leq 10 h_o
\]

\[
b_0 = 71.42 \text{ mm}
\]

\[
D = 15 \text{ mm}
\]

\[
\theta = 90^\circ
\]

\[
h_o = 200 \text{ mm}
\]

\[
K_d = \left(\frac{71.42 \times 15 \times \sin 90^\circ}{200 \times 1.2} \right)^{0.7}
\]

\[
= 1.709 \quad (0.5 < 1.315 < 8)
\]

\[
F_d = 1 \times 1.69 \times \frac{\pi^2 \times 2.11 \times 10^5}{12(1-0.32)} \left(\frac{2}{33.64} \right)^2
\]

\[
= 1081.423696 \text{ N/mm}^2
\]

\[
M_{crd} = S_e \times f_y
\]

\[
= 57146.53438 \times 1081.423696
\]

\[
= 61799616.42 \text{ N.mm}
\]

\[
M_y = S_y \times F_y
\]

\[
= 57146.53438 \times 247
\]

\[
= 14286633.6 \text{ N.mm}
\]

\[
\lambda_d = \frac{M_{crd}}{M_y}
\]

\[
= \sqrt{\frac{14286633.6}{61799616.42}} = 0.48080
\]
M_n = M_y

M_n = 14.28 \times 10^6 \text{ N.mm}

The least of the above will be the nominal moment capacity of the section. Hence the governing mode of failure is lateral torsional buckling and the moment capacity is Mn = 13.69 \times 10^6 \text{N.mm}

A.1.3 DESIGN AS PER AUSTRALIAN/NEW ZEALAND STANDARD FOR COLD FORMED STEEL (AS/NZS 4600:2005)

1. **Based on initiation of Yielding:**

 \[M_s = Z_e f_y \]

 Z_e is the effective section modulus calculated with the extreme compression or tension fibre at f_y

 fy is the yield stress

2. **Based on Lateral Torsional Buckling:**

 \[M_b = Z_c f_c \]

 Where \(Z_c = \) effective section modulus calculated at a stress \(f_c \) in the extreme

 \(f_c = \left(\frac{M}{Z_f} \right) \)

 \(M_c = \) critical moment

 \(Z_f = \) full unreduced section modulus for the extreme compression fibre

 The critical moment \((M_c) \) shall be calculated as follows:

 For \(\lambda_b \leq 0.60 \):

 \(M_c = M_y \)
For $0.60 < \lambda_b < 1.336$ \[M_c = 1.11 M_y \left[1 - \left(\frac{100 \lambda_b^2}{\lambda_0^3} \right) \right] \]

For $\lambda_b \geq 1.336$: \[M_c = M_y \left(\frac{1}{\lambda_0^3} \right) \]

Where $\lambda_b = \text{non-dimensional slenderness ratio used to determine } M_c \text{ for}

members subjected to lateral buckling

$\lambda_b = \frac{M_c}{\sqrt{M_o}}$

$M_y = \text{moment causing initial yield at the extreme compression fibre of}

\text{the full section}

= Z_4 f_y$

$M_o = \text{elastic buckling moment}

\text{Where } M_o = C_b A r_{o1} \sqrt{f_{o y} l_{o y}}$

$r_{o1} = \text{polar radius of gyration of the cross section about the shear centre.}

= \sqrt{r_x^2 + r_y^2 + x_o^2 + y_o^2} \]

C_b is permitted to be taken as unity for all cases.

$A = \text{area of the full cross-section}

r_{o1} = \text{polar radius of gyration of the cross section about the shear}

centre.\]

$= \sqrt{r_x^2 + r_y^2 + x_o^2 + y_o^2} \]

$r_x, r_y = \text{radii of gyration of the cross section about the x- and y- axes}

\text{respectively} \]

$x_o, y_o = \text{coordinates of the shear centre of the cross section}$

$f_{o y} = \text{elastic buckling stress in an axially loaded compression member for}

\text{the flexural buckling about the y- axis.}$
\[\frac{\pi 2E}{(l_{e y}/r_y)^2}\]

\[f_{oz} = \text{elastic buckling stress in an axially loaded compression member for torsional buckling}\]

\[= \frac{GJ}{A\Gamma_d} \left(1 + \frac{\pi 2Elw}{GJl_{ez}^2}\right)\]

\[l_{ex}, l_{ey}, l_{ez} = \text{effective length for buckling about the x-axis and y-axes, and for twisting, respectively}\]

\[G = \text{shear modulus of elasticity (80 × 10}^3\text{Mpa)}\]

\[J = \text{torsion constant for a cross section}\]

\[I_w = \text{warping constant for a cross section}\]

3. **Based on Distortional Buckling:**

The critical moment \(M_c\) shall be calculated as follows:

For \(\lambda_d < 0.59\):

\[M_c = M_y\]

For \(0.59 < \lambda_d \leq 1.70\):

\[M_c = M_y \left(\frac{0.59}{\lambda_d}\right)\]

For \(\lambda_d \geq 1.70\):

\[M_c = M_y \left(\frac{1}{\lambda_d}\right)\]

Where \(M_y = \text{moment causing initial yield at the extreme compression fibre of the full section}\)

\(\lambda_d = \text{non-dimensional slenderness used to determine } M_c \text{ for the member subjected to distortional buckling}\)

\[= \frac{M_c}{\sqrt{M_0}}\]

\(M_{od} = \text{elastic buckling moment in the distortional mode}\)

\[= Z_{d}f_{od}\]

Minimum of above moment is taken as Moment capacity of the section.
A1.4 NUMERICAL EXAMPLE FOR SPECIMEN TCDW-2000-200-100-1 AS PER AS/NZS 4600:2005

1. Based on initiation of Yielding:

\[Z_e = 55877.219 \text{ mm}^3 \text{ (Calculated as per code)} \]

\[f_y = 247 \text{ N/mm}^2 \text{ (Extreme flange material yield stress)} \]

\[M_s = Z_f f_y = 55877.219 \times 247 = 13.801 \times 10^6 \text{ Nmm} \]

2. Based on Lateral buckling:

\[Z_c = 55877.219 \text{ mm}^3 \]

\[Z_f = 57146.534 \text{ mm}^3 \]

\[f_c = \left(\frac{M_s}{Z_f} \right) \]

\[M_y = Z_f f_y = 57146.534 \times 247 = 14.28 \times 10^6 \text{ Nmm} \]

\[C_b = 1 \]

\[A = 759.998 \text{ mm}^2 \]

\[r_x = 87.577 \text{ mm} \]

\[r_y = 29.908 \text{ mm} \]

\[x_0 = 40 \text{ mm} \]

\[y_0 = 100 \text{ mm} \]

\[r_{ol} = \sqrt{r_x^2 + r_y^2 + x_0^2 + y_0^2} = \sqrt{87.577^2 + 59.908^2 + 40^2 + 100^2} = 94.058 \text{ mm} \]

\[E = 2.11 \times 10^5 \text{ N/mm}^2 \]

\[G = 76923.077 \text{ N/mm}^2 \]

\[J = 808.530 \text{ mm}^4 \]
\[l_{ez} = l = 2000 \text{ mm} \]

\[I_w = 6400821135.242 \text{ mm}^6 \]

\[f_{oz} = \frac{G_1}{\lambda r_{o2}} \left(1 + \frac{\pi^2 E_{t_u}}{G_1 I_{ez}} \right) \]

\[
= \frac{76923.077 \times 808.530}{759.998 \times 94.058^2} \left(1 + \frac{\pi^2 \times 2.11 \times 10^5 \times 6400821135.242}{76923.077 \times 808.530 \times 2000^2} \right) \\
= 215.678 \text{ N/mm}^2
\]

\[f_{oy} = \frac{\pi^2 E}{(l_{ey}/r_Y)^2} \]

\[
= \frac{\pi^2 \times 2.11 \times 10^5}{(2000/29908)^2} \\
= 3787.886 \text{ N/mm}^2
\]

\[M_o = C_b Ar_{o1} \sqrt{I_{o1}} f_{on} = 1 \times 759.998 \times 94.058 \sqrt{3787.886 \times 215.678} \\
= 3283664.012 \text{ N.mm}
\]

\[\hat{\lambda}_b = \frac{\sqrt{M_k}}{M_0} \]

\[
= \frac{\sqrt{14.28 \times 10^6}}{\sqrt{32.88 \times 10^6}} = 0.659
\]

For \(0.60 < \lambda_b < 1.336\),

\[M_c = 1.11 M_y \left[1 - \left(\frac{10\lambda_b^3}{36} \right) \right] \]

\[
= 1.11 \times 1.14286633.5 \left[1 - \left(\frac{10 \times 0.659^3}{36} \right) \right] \\
= 13945135.69 \text{ N.mm}
\]

\[f_c = \left(\frac{13945135.69}{57146.534} \right) \]

\[= 244.024 \text{ N/mm}^2 \]
\[M_b = Z_c f_c \]
\[= 55877.219 \times 244.024 \]
\[= 13635382.49 \text{ N.mm} \]

3. **Based on Distortional Buckling:**

\[f_{od} = \text{elastic distortional buckling stress calculated as per} \]
Appendix D of *AS/NZS 4600:2005*

\[= \frac{E}{2A} \left(\alpha_1 + \alpha_2 \right) - \sqrt{\left(\alpha_1 + \alpha_2 \right)^2 - 4\alpha_3} \]
\[= \frac{2.11 \times 10^5}{2759.998} \left(290.580 + 66.635 \right) \]
\[- \sqrt{(290.580 + 66.635)^2 - 4 \times 9239.081} \]
\[= 7386.865 \text{ N/mm}^2 \]

\[M_{od} = Z_f f_{od} \]
\[= 57146.534 \times 7386.865 \]
\[= 422133731.9 \text{ N.mm} \]

\[M_y = Z_f f_y \]
\[= 57146.534 \times 247 \]
\[= 14.28 \times 10^6 \text{ N.mm} \]

\[\lambda_{od} = \frac{M_y}{\sqrt{M_0}} = \frac{142866335}{422133731.9} \]
\[= 0.184 < 0.59 \]

Hence \(M_c = M_y \)
\[f_c = \left(\frac{M_n}{Y_f} \right) \]

\[= \left(\frac{14.28 \times 10^6}{57146.534} \right) \]

\[= 249.88 \text{N/mm}^2 \]

The nominal member capacity \(M_b = Z_c f_c \)

\[= 55877.219 \times 249.88 \]

\[= 13962599.48 \text{N/mm}^2 \]

The least of the above will be the nominal moment capacity of the section, Hence the governing mode of failure is lateral torsional buckling and the moment capacity is \(M_n = 13.63 \times 10^6 \text{N.mm} \)

A.1.5 DESIGN AS PER INDIAN STANDARD FOR COLD FORMED STEEL IS 801-1975

1. Based on Yielding

Nominal Moment = \(S \times F_y \)

\(F_y \) = Specified minimum yield point.

\(S \) = unreduced Elastic section modulus

2. Based on Lateral Torsional Buckling

When

\[\frac{1.8 \pi^2 E C_b}{d_{yyc}} \geq \frac{0.36 \pi^2 E C_b}{d_{yyc}} \]

\[F_b = \frac{2F_y}{3} = \frac{E \pi^2 E C_b}{5.4 \pi^2 E C_b \cdot d_{yyc}} \]

When

\[\frac{1.8 \pi^2 E C_b}{d_{yyc}} \geq \frac{1.8 \pi^2 E C_b}{F_y} \]

\[F_b = 0.6 \pi^2 E C_b \cdot \frac{d_{yyc}}{1.8 \pi^2 E C_b} \]
\[\text{Mn} = F_B \times I_{yc} / Y_c \quad \text{N.mm} \]

\[L = \text{the unbraced length of the member} \]

\[I_{yc} = \text{the moment of inertia of the compression portion of a section about the gravity axis of the entire section parallel to the web} \]

\[S_{xc} = \text{Compression section modulus of entire section about major axis, } I_x \text{ divided by distance to extreme compression fibre} \]

\[E = \text{modulus of elasticity} \]

\[d = \text{depth of section.} \]

\[C_b = \text{bending coefficient which can conservatively be taken as unity.} \]

Numerical example for specimen TCDW-2000-200-100-1 as per IS 801:1975

1. **Based on Yielding**

 \[F_y = 247 \text{ N/mm}^2 \]

 \[S = 68502.02 \text{ mm}^3 \]

 Nominal Moment \[M_n = S \times F_y = 68502.02 \times 247 \]

 \[M_n = 16.92 \times 10^6 \text{ N.mm} \]

2. **Based on Lateral Torsional Buckling**

 \[L = 2000 \text{ mm} \]

 \[I_{yc} = 339894.582 \text{ mm}^4 \]

 \[S_{xc} = 55877.2186 \text{ mm}^3 \]

 \[E = 2.11 \times 10^5 \text{ N/mm}^2 \]
\[d = 200 \text{ mm} \]

\[C_b = 1 \]

When
\[
\frac{I_z S_{xc}}{d l_{yc}} > \frac{0.36 \pi^2 E C_b}{F_Y} \quad \& \quad \frac{I_z S_{xc}}{d l_{yc}} < \frac{1.8 \pi^2 E G_b}{F_Y}
\]

\[
\frac{I_z S_{xc}}{d l_{yc}} = \frac{2000^2 \times 64474.14}{200 \times 339894.582} = 3793.7727
\]

\[
\frac{0.36 \pi^2 E C_b}{F_Y} = \frac{0.36 \times 3.14^2 \times 3.14 \times 2 \times 11 \times 10^5 \times 1}{247} = 3032.126
\]

\[
\frac{1.8 \pi^2 E G_b}{F_Y} = \frac{1.8 \times 3.14^2 \times 2 \times 11 \times 10^5 \times 1}{247} = 14370.26
\]

\[
F_b = \frac{2F_Y}{3} - \frac{F_Y^2}{5.4 \pi^2 E C_b \frac{d l_{yc}}{l_{xc}}}
\]

When
\[
\frac{I_z S_{xc}}{d l_{yc}} \geq \frac{1.8 \pi^2 E G_b}{F_Y}
\]

\[
F_b = 0.6 \pi^2 E C_b \frac{d l_{yc}}{l_{xc}}
\]

\[
F_B = \frac{2 \times 247}{3} - \frac{247^2}{5.4 \times 3.14^2 \times 2 \times 11 \times 10^5 \times 1} \frac{2000^2 \times 55877.2186}{200 \times 339894.582} = 146.8043 \text{ N/mm}^2
\]

\[
Mn = F_b \times I_{yc} / Y_c \quad \text{N.mm}
\]

\[= 146.8043 \times 6242528 / 100 = 16118534 \text{ N.mm} \]

The least of the above will be the nominal moment capacity of the section,

Hence the governing mode of failure is lateral torsional buckling and the moment capacity is \(Mn = 16.11 \times 10^6 \text{N.mm} \)
APPENDIX 2

MODEL CALCULATION OF PROPOSED EQUATION

Specimen TCA-3600-400-150-6

A.2.1 CALCULATION OF UNREDUCED SECTION MODULUS

\[I_{XX} = \frac{t_w h w^3}{12} + 2 \left[\frac{b_f t_f^3}{12} + b_f t_f \left(\frac{D}{2} - \frac{t_f}{2} \right)^2 \right] \]

\[+ 4 \left[\frac{t_f (b_t - t_f)}{12} + (b_t - t_f) \times t_f \left(\frac{D}{2} - \frac{(b_t - t_f)}{2} - \frac{t_f}{2} \right)^2 \right] \]

\[= \frac{1.2 \times 396^3}{12} + 2 \left[\frac{150 \times 2^3}{12} + 150 \times 2 \times \frac{400}{2} - \frac{2}{2} \right]^2 \]

\[+ 4 \left[\frac{2(15 - 2)}{12} + (15 - 2) \times 2 \times \frac{400}{2} - \frac{(15 - 2)}{2} - 2 \right]^2 \]

\[= 6209913.6 + 23760800 + 3815378.667 \]

\[= 33786092.27 \text{ mm}^4 \]

\[Z_f = I_{XX} / y \]

\[= 33786092.27 / 200 \]

\[= 168930.4614 \text{ mm}^3 \]

A.2.2 CALCULATION OF YIELDING MOMENT \(M_y \)

CONSIDERING FULL SECTION

\[M_y = Z_f f_y = 168930.4614 \times 247 = 41.725 \times 10^6 \text{ Nmm} \]
A.2.3 CALCULATION OF ELASTIC BUCKLING MOMENT M_o

$C_b = 1$

$A = 119.998 \text{ mm}^2$

$r_x = 170.413 \text{ mm}$

$r_y = 39.596 \text{ mm}$

$x_0 = 40 \text{ mm}$

$y_0 = 100 \text{ mm}$

$r_{ol} = \sqrt{r_x^2 + r_y^2 + x_0^2 + y_0^2} = \sqrt{170.413^2 + 39.596^2 + 40^2 + 100^2}$

$= 175.091 \text{ mm}$

$E = 2.11 \times 10^5 \text{ N/mm}^2$

$G = 76923.077 \text{ N/mm}^2$

$J = 1190.380 \text{ mm}^4$

$l_{ex} = l = 3600 \text{ mm}$

$I_w = 1881449.290 \text{ mm}^6$

$f_{oz} = \frac{GJ}{Ar_{ol}} \left(1 + \frac{\pi^2 E I_b}{GJ l_{ex}^2} \right)$

$= \frac{76923.077 \times 1190.380}{119.998 \times 175.091} \left(1 + \frac{\pi^2 \times 2.11 \times 10^5}{76923.077 \times 1190.380 \times 3600^2} \right)$

$= 95.827 \text{ N/mm}^2$

$f_{oy} = \frac{\pi E}{(l_{ex}/r_y)^2}$

$= \frac{\pi^2 \times 2.11 \times 10^5}{(3600/39.596)^2}$

$= 238.801 \text{ N/mm}^2$

$M_o = C_b A r_{ol} \sqrt{l_{oz} I_{oz}} = 1 \times 1119.998 \times 175.091 \sqrt{95.827 \times 238.801}$

$= 49792199.279 \text{ N.mm}$
\[\hat{\lambda}_b = \frac{M_c}{M_s} \]

\[= \frac{41.725 \times 10^6}{49.79 \times 10^6} = 0.915 \]

\(\hat{\lambda}_b \) lies between 0.879 & 1.310, as per the proposed equation 6.1,

Critical moment \(M_c = M_y (1.378 - 0.489\hat{\lambda}_b^2) \)

\[= 41.725 \times 10^6(1.378 - 0.489 \times 0.915^2) \]

\[= 40414708.13 \text{ N.mm} \]

\[f_c = \left(\frac{40798074.13}{1689304614} \right) \]

\[= 239.239 \text{ N/mm}^2 \]

A.2.4 CALCULATION OF EFFECTIVE SECTION MODULUS AS PER CODE

For the first iteration, assume a compression stress \(F_y = 247 \text{ N/mm}^2 \) in the top fibre of the section and that the neutral axis is 200mm. Below the top fibre.

i. Calculation of effective width of flange:

\(w = b = 99.38 \text{ mm} \)

\(w/t = 99.38/2 = 49.69 < 60 \text{ OK} \)

\(S = 1.28 \sqrt{\frac{E}{f}} \)

\[= 1.28 \sqrt{\frac{2.11 \times 10^5}{247}} = 37.41129319 \]

\(w/t \geq 0.328S \rightarrow \text{check effective width of flange} \)

Compute \(k \) of the flange based on stiffener lip properties
\[I_a = 399 \cdot t^4 \left[\frac{\nu + 1}{S} - 0.328 \right]^3 \leq (1)^4 \cdot \left[\frac{115 + w}{S} + 5 \right] \]

\[I_a = 399 \cdot 2^4 \left[\frac{49.69}{37.411} - 0.328 \right]^3 \leq (2)^4 \cdot \left[\frac{115 + 49.69}{37.411} + 5 \right] \]

\[= 6388.194 \text{ mm}^4 \leq 2523.92291 \text{ mm}^4 \]

\[I_a = 2523.922 \text{ mm}^4 \]

\[R = \text{radius of corner} \]

\[d = c = \text{lip depth} - \left((R + \frac{t}{2}) + \left(\frac{t}{2} \right) \right) = 15 - \left(2 + \frac{t}{2} + \frac{t}{2} \right) = 11 \text{ mm}. \]

\[\theta = 90 \text{ degrees}. \]

\[I_s = \frac{(d^3 \cdot \sin^2 \theta)}{12} \]

\[= (11^3 \cdot 2 \cdot \sin^2 90^\circ)/12 \]

\[= 221.833 \text{ mm}^4 \]

\[R_l = \frac{t}{k} \leq 1 \]

\[\frac{221.833}{2523.922} = 0.08789 < 1 \text{ Hence OK.} \]

\[n = \left[0.582 - \frac{w}{4S} \right] \geq 1/3 \]

\[= \left[0.582 - \frac{49.69}{4 \cdot 37.411} \right] \geq 1/3 \]

\[n = 0.2499 < 1/3 \quad n = 0.333 \]

\[D = \text{depth of lip} = 15 \text{ mm} \]

\[D/ w = \frac{15}{9.38} = 0.1509 < 0.8 \text{ OK} \]

\[K = \left(4.82 - 5 \frac{D}{w} \right) R_l^n + 0.43 \leq 4 \]

\[K = \left(4.82 - 5 \cdot 0.1509 \right) (0.08789)^{0.1509} + 0.43 \leq 4 \]
\[F_{cr} = k \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{W} \right)^2 \]

\[= 2.252 \times \frac{3.1415^2 \times 201 \times 10^6}{12(1-0.3^2)} \left(\frac{2}{99.38} \right)^2 = 173.75 \text{ N/mm}^2 \]

\[\lambda = \frac{f}{\sqrt{F_{cr}}} \]

\[= \frac{247}{\sqrt{17375}} = 1.199 > 0.673 \rightarrow \text{flange is subject to local buckling} \]

\[\rho = \frac{1 - 0.22}{\lambda} / \lambda \]

\[= \frac{1 - 0.22}{1.199} / 1.199 \]

\[= 0.979 \]

\[b = \rho w \]

\[= 0.979 \times 99.38 = 97.29 \text{mm} \]

ii. Calculation of effective width of Stiffener lip:

\[w/t = d/t = 11/2 = 5.5 \]

Maximum stress in lip (by similar triangles)

\[f = f_1 = f_y \times \frac{(N.A - \frac{d}{2} - t)}{N.A} \]

\[= 247 \times \frac{(200 - \frac{2}{2} - 3)}{200} = 242.06 \text{ N/mm}^2 \]

\[f_2 = f_y \times \frac{(N.A - D)}{N.A} \]

\[= 247 \times \frac{200 - 15}{200} = 228.475 \text{ N/mm}^2 \]

\[\Psi = \frac{f_2}{f_1} \]

\[= 228.475 / 242.06 = 0.94388 \]

\[k = \frac{0.578}{\Psi + 0.34} = \frac{0.578}{0.94388 + 0.34} = 0.4502 \]
\[F_{cr} = k \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{w} \right)^2 \]

\[= 0.4502 \times \frac{3 \times 4 \times 2 \times 11 \times 10}{12(1-0.5^2)} \left(\frac{1}{5.5} \right)^2 \]

\[= 2838.17 \text{ N/mm}^2 \]

\[\lambda_c = \sqrt{\frac{f}{F_{cr}}} \]

\[= \sqrt{\frac{247}{2838.17}} = 0.29204 < 0.673 \rightarrow \text{lip is not subjected to local buckling} \]

\[d_s = d = 11 \text{ mm.} \]

\[d_s = d_s^* (R_1) \]

\[= 11 \times 0.1509 = 1.66025 \text{ mm} \]

iii. Calculation of effective width of Web:

\[\frac{w}{t} = 333.33 \]

\[f = f_1 = f_y * \left(\frac{(N.A - \frac{b_w}{2} - r)}{N.A} \right) \]

\[f_1 = 247 * \left(\frac{(200 - \frac{1}{2} - 3)}{200} \right) \]

\[= 247.494 \text{ N/mm}^2 \]

\[\Lambda' = \text{overall depth of section} = 400 + 2 + 2 = 404 \text{ mm} \]

\[f_2 = f_y * \left(\Lambda' - N.A - \frac{b_w}{2} - r \right) / N.A \]

\[= 247 * \left(404 - 200 - \frac{1}{2} - 3 \right) / 200 = 247.494 \text{ N/mm}^2 \]

\[\Psi = \left| \frac{f_2}{f_1} \right| = \frac{247.494}{242.554} = 1.020 \]

\[K = 4 + 2(1 + \Psi^3) + 2(1 + \Psi) \]

\[= 4 + 2(1 + 1.020)^3 + 2(1 + 1.020) \]

\[= 24.5345 \]
\[F_{cr} = k \frac{\pi^2 E}{12(1-\mu^2)} \left(\frac{t}{w} \right)^2 \]

\[F_{cr} = 24.5345 \times \frac{3.14^4 \times 3.14 \times 2110000}{12(1-0.3^4 \times 0.3)} \times \left(\frac{2}{166.667} \right)^2 = 42.1095 \text{ N/mm}^2 \]

\[\lambda = \sqrt{\frac{f}{F_{cr}}} \]

\[= \sqrt{\frac{247}{42.1095}} = 2.40002 > 0.673 \rightarrow \text{web may be subjected to local buckling} \]

\[\rho = (1 - 0.22/ \lambda_\lambda) \]

\[= (1 - 0.22/ 2.40002)/2.40002 \]

\[= 0.37847 \]

\[a = \text{depth of web} = 400 \text{ mm} \]

\[b_e = b = a \rho = 151.388 \text{ mm} \]

\[h_o/b_o = 5.38667 < 4.0 \]

\[b_1 = b_e (3+y) \quad (y = \Psi) \]

\[= 151.388/ (3+1.020) = 37.6553 \text{ mm} \]

For \(\Psi > 0.236 \)

\[B_2 = b_o/2 = 151.388/2 = 75.6939 \text{ mm} \]

\[B_1 + b_2 \leq w/2 \]

\[37.6553 + 75.6939 = 113.349 < 196 \rightarrow \text{web is not fully effective for this iteration. Recomputing properties by parts. Considering the ineffective portion of the web as an element with a negative length} \]

\[B_{neg} = -(196-113.349) = -7.368491 \text{ mm} \]

Its centroidal location below the top fibre:

\[y = t/2 + r + b_1 + b_{neg}/2 \]

\[= 1.2/2 + 3 + 37.6553 + 7.368/2 \]

\[= 82.9806 \text{ mm} \]
\[
Y = \frac{\sum Ay}{\sum A} = \frac{227631.53}{1020.2} = 223.12 \text{ mm below top fibre}
\]

\[
I_x = \frac{\sum I_x + \sum Ay^2 - y^2 \sum A}{\sum A} = \frac{[4.028 \times 10^{11} + 7.46 \times 10^7 - (347.047)^2 \times (1020.2)]}{\sum A}
\]

\[
= 32917421.69 \text{ mm}^4
\]

The calculated neutral axis location (344.584mm) does not equal the assumed neutral axis location (200 mm); therefore, iteration is required. After further iterations, the solution converges to:

\[
I_x = 31516355.43 \text{ mm}^4
\]

\[
Y = 344.584 \text{ mm}
\]

Effective section modulus \(S_e = 135095.1838 \text{ mm}^3 \)

Predicted moment

\[
M_{Pr} = Z_e f_c
\]

\[
= 135095.1838 \times 239.238
\]

\[
= 32319999.99 \text{ N.mm}
\]