TABLE OF CONTENTS

Candidate’s Declaration i
Certificate of the Supervisor ii
Acknowledgements iii
List of Publications from the Thesis iv-v
Abstract vi-vii
Table of Contents xiv-xiii
List of Tables xiv-xvi
List of Graphs xvii-xxii
List of Photographs xxiii
List of Diagrams xxiv
List of Abbreviations xxv-xxix

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction</td>
<td>3-24</td>
</tr>
<tr>
<td></td>
<td>1.1 General Introduction on Pavement Construction</td>
<td>3-6</td>
</tr>
<tr>
<td></td>
<td>1.1.1 Quality Control in Construction of Flexible Pavements</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>1.1.2 Quality Assurance in Construction of Flexible Pavements</td>
<td>5-6</td>
</tr>
<tr>
<td></td>
<td>1.2 e-Quality Control in Construction of Flexible Pavements</td>
<td>6-9</td>
</tr>
<tr>
<td></td>
<td>1.2.1 e-Control on Use of Bitumen and Quality of its Products</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.2.2 e-Control on Use of Equipment, Machineries and Vehicles</td>
<td>8-9</td>
</tr>
<tr>
<td></td>
<td>1.3 Existing System of Quality Control with Technical Specifications</td>
<td>10-22</td>
</tr>
<tr>
<td></td>
<td>1.3.1 Existing System of Quality Control in Different Materials/Layers</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td>1.3.2 Existing Standards of Typical Cross-Sections of Highways</td>
<td>20-22</td>
</tr>
<tr>
<td></td>
<td>1.4 Organisation of Thesis</td>
<td>22-24</td>
</tr>
<tr>
<td>II</td>
<td>Scope, Objectives and Methodology of Study</td>
<td>27-33</td>
</tr>
<tr>
<td></td>
<td>2.1 Scope and Objectives of the Study</td>
<td>27-28</td>
</tr>
</tbody>
</table>
2.2 Methodology
 2.2.1 Development of e-Quality Control System 28-29
 2.2.2 Updating of Machinery 29
 2.2.3 Project Selection and Site Arrangements 29
 2.2.4 e-Control on Quality and Quantity 30-32
 2.2.5 Experimenting to Generate Test Results 32
 2.2.6 Verification of Test Results 32
 2.2.7 Formulating New Standards for Flexible Pavements 33

III Literature Survey and Review 37-66
 3.1 Quality Control 37-47
 3.2 Riding Quality in Highways 47-49
 3.3 Use of Electronics for Quality Control 49-55
 3.4 Vehicle Tracking System 55-60
 3.5 Machinery for Highway Construction 60-64
 3.6 Motivation 64-66

IV Modeling of Economical and Efficient Use of Vehicles Through e-Control for the Construction of a Highway 69-80
 4.1 Introduction 69-70
 4.2 Preliminaries 70
 4.2.1 Live Data 70
 4.2.2 Positioning of Vehicles 70
 4.3 Methodology 79-71
 4.4 A Case Study 71-79
 4.5 Conclusion 80
Use of Updated Machinery for Monitoring of Quality and Quantity of a Pavement – A Case Study on e-Quality Control

5.1 Introduction
5.2 Preliminaries
5.2.1 Batch Mix Type Hot Mix Plant
5.2.2 Concrete Batching and Mixing Plant
5.2.3 Automatic Wet Mix Plant
5.3 Methodology
5.3.1 Algorithm
5.4 A Case Study
5.5 Results and Discussions
5.6 Conclusion

Modeling for Assured Quality Control in Flexible Pavements Through e-Control – A Case Study

6.1 Introduction
6.2 Preliminaries
6.2.1 Present Day Requirements
6.2.2 Website for Live Data
6.2.3 Quality in Equipment to be Used
6.3 Methodology
6.4 A Case Study
6.4.1 e-Control on Receipt of Bitumen
6.4.2 e-Control on the Mixed Bituminous Material
6.4.3 e-Control at Weighing Machine Site
6.4.4 e-Control on Vehicles
6.4.5 e-Control at Work Site
6.4.6 e-Control on Testing
6.5 Results and Discussions
6.6 Conclusion
VII Upgrading Properties of Aggregates in Flexible Pavements with e-Control 115-137

7.1 Introduction 115-116
7.2 Effects of Surface Area of Aggregates 116-118
 7.2.1 Shape of Aggregates 116-117
 7.2.2 Size of Aggregates 117-118
7.3 Experimental Work 118-135
 7.3.1 Properties of Aggregates 119
 7.3.2 Change in Properties of Aggregates with Increase in Flaky Particles 120-122
 7.3.3 Effect of Size and Shape of Aggregates on Bitumen Content in DBM 122-128
 7.3.4 Effect of Size and Shape of Aggregates on Bitumen Content in Case of BC 128-135
7.4 Results and Discussions 136-137
7.5 Conclusion 137

VIII Effect of e-Quality Control on Tolerance Limits in WMM and DBM in Highway Construction - A Case Study 141-156

8.1 Introduction 141
8.2 Requirements for Change in Tolerance Limits 142
8.3 Methodology 142
8.4 A Case Study 142-155
8.4.1 Tolerance Limits in Wet Mix Macadam (WMM) 143-148
8.4.2 Tolerance Limits in Dense Bituminous Macadam (DBM) 148-155
 8.4.2.1 Aggregates 148-153
 8.4.2.2 Bitumen Contents 143-155
8.5 Results and Discussions 156
8.6 Conclusion 156

IX **Upgrading Standards of Riding Quality in BC – A Case Study** 156-180
 9.1 Introduction 159-160
 9.2 Tolerances Limits in Aggregates and Bitumen Content 160
 9.3 Pavement Riding quality 161
 9.4 Requirements of Existing Specifications 161
 9.5 Methodology 162
 9.6 A Case Study 162-178
 9.6.1 Tolerance Limits in Bituminous Concrete (BC) 162-170
 9.6.1.1 Aggregates 162-168
 9.6.1.2 Bitumen Contents 168-170
 9.6.2 Assessment of Riding quality 170-178
 9.7 Results and Discussions 178-179
 9.8 Conclusion 179-180

X **Modification of Acceptance Criteria of Sample Testing in Flexible Pavements** 183-201
 10.1 Introduction 183-184
 10.2 Preliminaries 184-187
 10.2.1 Modern Equipment, High Volume of Production and Laying of Material 184-185
 10.2.2 Requirement of Tests as per Specifications 186-187
 10.2.3 Present Day Requirements 187
 10.3 Methodology 187-189
10.4 Experimental Study

10.4.1 Trail Length

10.4.2 Data Collection of First Layer (WMM)

10.4.3 Data Collection of Second Layer (DBM)

10.4.4 Data Collection of Third Layer (BC)

10.5 Results and Discussions

10.6 Conclusion

XI Conclusion and Future Scope of Work

XII References

XIII Brief Biodata of the Researcher