CONTENTS

ACKNOWLEDGEMENTS I-III

CONTENTS IV-IX

ABBREVIATIONS X-XI

LIST OF TABLES XII-XIII

LIST OF FIGURES XIV-XVII

Chapter – I

INTRODUCTION 1-11

1.1 Asparagine Biosensor 2

1.1.1 Biocomponent for Asparagine biosensor. 3

1.1.1.1 Withania somnifera (Ashwagandha) 4

1.1.1.2 Structure of asparaginase 5

1.1.2 Transducers 7

1.1.2.1 Potentiometric Transducer. 8

1.1.2.2 Optical Transducer 9

Chapter – II

REVIEW OF LITERATURE 12-38

2.1 Comparison of Plant Asparaginase. 12

2.1.1 Plant Sources of Asparaginase 12

2.1.2 Structural comparison of Plant asparaginases 15

2.1.3 Methods of determination of enzyme activity 16

2.1.4 Method of extraction for Asparaginase from different Plants 18

2.1.5 Purification of Plant asparaginases 19
2.1.6 Kinetic characteristics of Plant asparaginases 20
2.1.7 Genetics of plant asparaginases 21
2.1.8 Application of Plant Asparaginases 23
2.2 Withania somnifera and its properties 24
2.2.1 Chemical Composition 25
2.2.2 Anti-inflammatory effect 26
2.2.3 Anti-Stress effect 26
2.2.4 Anti-oxidant effect 26
2.2.5 Anti-microbial effect 26
2.2.6 Anti-aging effect 27
2.2.7 Anti Carcinogenic effect 27
2.2.8 Immunomodulatory effect 27
2.3 Immobilization of L-asparaginase 28
2.4 Asparagine Biosensors.

Chapter – III

MATERIALS AND METHODS 39-73

3.1 Enzyme extraction 39
3.1.1 Grinding with chilled buffer 39
3.1.2 homogenizer 39
3.1.3 liquid Nitrogen 40
3.1.4 sea sand 40
3.2 Characterization of Bioassay principle 40
3.2.1 Estimation of ammonia by Nessler’s reagent test 40
3.2.2 Enzyme assay 41
3.3 Optimization of Fruit stage 42
3.4 Cytological studies

3.5 Comparison of cytotypes of Ashwagandha for L-asparaginase activity

3.6 Immobilization of crude enzyme and semiquantitative approach of biosensing of asparagine.

3.7 Development of Colorimetric biosensor for asparagine.

3.7.1 Immobilization of enzyme with TEOS hydrosol gel-chitosan based technique.

3.7.2 Application of developed biosensor on fruit juices

3.8 Estimation of protein.

3.9 Purification of L-asparaginase

3.9.1 Ammonium sulphate precipitation

3.9.2 Dialysis

3.9.3 Gel permeation chromatography

3.9.4 Ion exchange chromatography

3.9.5 PAGE and SDS-PAGE

3.10 Kinetic characteristics of L-Asparaginase

3.11 Immobilization of Purified enzyme.

3.11.1 TEOS with Chitosan

3.11.2 TEOS with Xanthan gum

3.11.3 TEOS with Gelatin

3.11.4 TEOS with Agar

3.11.5 TEOS with Acacia gum

3.12 Development of Ion Selective Electrode (ISE) based Potentiometric Biosensor

3.12.1 Ion Selective Electrode
3.12.1.1 Calibration of NH_4^+ ISE

3.12.2 Potentiometric Biosensor

3.12.2.1 Immobilization of biocomponent

3.12.2.2 Optimization of response time

3.12.2.3 Construction of L-Asparagine Standard Reference Chart using ISE

3.12.3 Application of the Developed Biosensor

3.12.4 Reliability check of the developed Biosensor

3.12.5 Storage Stability of Biocomponent

3.13 Development of Fluorescence based Fibre Optic Biosensor

3.13.1 Fluorescence Spectroscopy

3.13.1.1 Principle of measurement

3.13.1.2 Indicator Fluorescent Dye

3.13.1.3 Fluorescence Spectra of Dye

3.13.1.4 Immobilization of the biocomponent

3.13.1.5 Optimization of response time

3.13.1.6 Construction of L-Asparagine Standard Reference Chart using fiber optic spectrofluorimeter

3.13.2 Application of Developed Biosensor

3.13.3 Validation studies of the developed Biosensor

3.13.4 Storage Stability

Chapter – IV

RESULTS AND DISCUSSION

4.1 Optimization of Enzyme extraction from the fruits of *Withania somnifera*

4.2 Optimization of Fruit stage

4.3 Cytological studies of *W. somnifera.*
4.4 Comparison of cytotypes of *W. somnifera* for L-asparaginase activity 78

4.5 Immobilization of crude enzyme 80

4.6 Development of Colorimetric biosensor for asparagines 81

4.6.1 Immobilisation of biocomponent 81

4.6.2 Kinetic properties. 81

4.6.3 Optimization of response time 83

4.6.4 Application of Developed Biosensor 85

4.7 Estimation of protein 86

4.8 Purification of L-asparaginase 86

4.8.1 Ammonium sulphate precipitation 86

4.8.2 Gel permeation chromatography 88

4.8.3 Q- Sepharose strong anion exchange chromatography 90

4.9 Poly Acrylamide Gel Electrophoresis (PAGE) 92

4.10 SDS-PAGE (Mercaptoethanol treated) 93

4.11 Kinetic characteristics of purified L-Asparaginase 94

4.12 Immobilization of purified L-asparaginase 96

4.12.1 Kinetic characterization of enzyme immobilized in TEOS-Chitosan disc. 97

4.12.2 Kinetic characterization of enzyme immobilized in TEOS-Xanthan gum disc. 100

4.12.3 Kinetic characterization of enzyme immobilized in TEOS-Gelatin disc. 102

4.12.4 Kinetic characterization of enzyme immobilized in TEOS-Agar disc. 105
4.12.5 Kinetic characterization of enzyme immobilized in
TEOS- Acacia Gum disc. 107

4.13 Comparison of kinetic parameters of immobilized enzyme in
different TEOS biopolymer discs. 109

4.14 Development of Ion Selective Electrode (ISE) based
Potentiometric Asparagine Biosensor 112

4.14.1 Optimization of response time 113

4.14.2 Construction of L-Asparagine Standard Reference Chart using ISE 114

4.14.3 Application of the Developed ISE Asparagine Biosensor 116

4.14.4 Reliability check of the developed Biosensor 118

4.14.5 Storage Stability of Biocomponent 119

4.15 Development of Fluorescence based Fibre Optic Biosensor 120

4.15.1 Fluorescence Spectra of Dye 120

4.15.2 Optimization of response time 121

4.15.3 Construction of L-Asparagine Standard Reference Chart
using fiber optic spectrophotometer 122

4.15.4 Application of Developed Biosensor 124

4.15.5 Reliability check of the developed Biosensor 126

4.15.6 Storage Stability of Biocomponent 127

CONCLUSIONS 128-129

RECOMMENDATIONS FOR FURTHER RESEARCH 130

SUMMARY 131-135

PUBLICATIONS / CONFERENCES / WORKSHOPS ATTENDED 136

REFERENCES 137-154