The following papers have been published/ accepted for publication / presented in various journals / symposia

1. Simultaneous determination of thermal conductivity and specific heat near solid state phase transitions employing photopyroelectric technique

2. Thermal properties of Glycine phosphite across ferroelectric phase transition:

 A photopyroelectric study

3. Thermal properties of thiourea single crystals during an commensurate-incommensurate phase transition (communicated).

4. Thermal properties of LCMO system employing photopyroelectric technique (communicated).

5. Thermal conductivity and heat capacity of La-Pb-Mn-O system during metal-insulator transition (communicated).

6. Thermal properties of $La_{0.5}Sr_{0.5}Co_{1-x}$Ni$_x$O$_3$ system using photopyroelectric technique (communicated).

7. Simultaneous determination of thermal conductivity and specific heat near solid state phase transitions employing photopyroelectric technique,

8. Thermal conductivity and heat capacity across para-ferroelectric phase transition in GPI crystals

9. Thermal properties of La-Pb-Mn-O system across metal-insulator transition: A photopyroelectric study

10. Thermal properties of thiourea studied using photopyroelectric technique

DAE Solid State Physics Symposium, Bombay, Dec 27-31, 2001 (communicated).

In addition to these, another 5 papers that are not included in this thesis have also been published during the course of this work

11. **Carrier type reversal in Pb-Ge-Se glasses** – Photopyroelectric measurement of thermal conductivity and specific heat

12. Photopyroelectric determination of thermal parameters of Pb-Ge-Se glasses exhibiting a carrier type reversal.

Analytical Sciences (accepted) 2000.

13. Photopyroelectric determination of thermal parameters of Pb-Ge-Se glasses exhibiting a carrier type reversal.

14. Carrier type reversal in Pb-In-Se glasses reflected in thermal transport measurements

15. Carrier type reversal in chalcogenide glasses: Some thermal facts and figures

16. Thermal properties across thresholds in Ge-As-Se glasses