Contents

Acknowledgements i
List of figures and tables iii
Abbreviation v
Abstract of the dissertation vii

1. **Introduction** 1
 1.1. Definition 1
 1.2. Signs and symptoms of Alzheimer’s disease 1
 1.3. Risk factors of Alzheimer’s disease 1
 1.4. Prevalence of Alzheimer’s disease 2
 1.5. Pathophysiology of Alzheimer’s disease 3
 1.5.1. Plaque formation 3
 1.5.2. Neurofibrillary tangles 4
 1.5.3. Inflammation 5
 1.6. Treatment of Alzheimer’s disease 8
 1.6.1. Pharmacological therapy 8
 1.6.2. Non-pharmacological therapy 11
 1.7. Role of herbal medicine in the treatment of Alzheimer’s disease 16
 1.8. Rationale of the present study 21

2. **Literature review** 25
 2.1. Review on animal model used in the present study 25
 2.2. Review on relation between Type 2 Diabetes and Alzheimer’s disease 28
 2.3. Review on role of glucagon-like peptide-1 and dipeptidyl peptidase-4 in Alzheimer’s disease 30
 2.4. Review on phytochemistry and pharmacology of plants used in the present study 32

3. **Plant profile** 35
 3.1. *Pterocarpus marsupium* Roxb. 35
 3.2. *Eugenia jambolana* Lam. 36
 3.3. *Gymnema sylvestre* R.Br. 37

4. **Scope and objectives** 39
 4.1. Scope .. 39
 4.2. Objectives 40
5. Experimentation

5.1. Chemicals and reagents

5.2. Extracts and standardization

5.3. In vitro evaluation

5.3.1. Dipeptidyl peptidase-4 inhibition assay

5.3.2. Dissociation kinetics of dipeptidyl peptidase-4

5.4. Molecular docking studies

5.5. In vivo evaluation

5.5.1. Animals

5.5.2. Experimental induction of Alzheimer’s disease

5.5.3. Behavioral studies

5.5.3.1. Radial arm maze task

5.5.3.2. Hole-board task

5.5.4. Biochemical studies

5.5.4.1. Estimation of hippocampal active glucagon-like peptide-1

5.5.4.2. Estimation of hippocampal amyloid 42 levels

5.5.4.3. Estimation of hippocampal total tau and phosphorylated tau

5.5.4.4. Estimation of hippocampal tumor necrosis factor-α and interleukin-1β levels

5.5.5. Histology of hippocampus

5.5.6. Statistical analysis

6. Results

6.1. In vitro evaluation

6.2. In silico evaluation

6.3. Behavioral analysis

6.3.1. Effect of P. marsupium and E. jambolana on the radial arm maze task

6.3.2. Effect of P. marsupium and E. jambolana on the hole-board task

6.4. Biochemical analysis

6.4.1. Effect of P. marsupium and E. jambolana on active glucagon-like peptide-1 levels

6.4.2. Effect of P. marsupium and E. jambolana on amyloid 42 levels

6.4.3. Effect of P. marsupium and E. jambolana on total tau and phosphorylated tau levels
6.4.4. Effect of *P. marsupium* and *E. jambolana* on tumor necrosis factor-α and interleukin-1β levels

6.5. Histology of neuronal count

7. Discussion

7.1. *In vitro* evaluation

7.2. Molecular docking

7.3. *In vivo* evaluation

8. Conclusion

9. Future directions

10. References

11. Annexure I - CSIR senior research fellowship award letter.

12. Annexure II - Publications

13. Annexure III - Conferences attended

14. Annexure IV - Animal ethical approval

15. Annexure V - Certificate of analysis of extracts