CHAPTER-3

RESEARCH METHODOLOGY

3.1 Introduction:

In the previous chapter, the underlying theoretical framework of this study has been presented. This chapter describes the methodology undertaken in relation to justification of the research paradigm, questionnaire design, sampling process and data collection and administration. In addition, this chapter introduces the intended Analysis: strategy as to test the propositions of this study. Finally, the data collection and relevant to this research is discussed.

Research in common parlance refers to a search for knowledge one can also define research as a scientific and systematic research for pertinent information on a specific topic. In fact research is an art of scientific investigation. The present study is an attempt to study of the adoption of electronic banking technology with reference to Indian banking sector.

3.2 Research Design:

The research design is the conceptual structure within which research is conducted; it constitutes the blueprint for the collection, measurement and Analysis: of data. It is the arrangement of conditions for collection and Analysis: of data in a manner that aims to combine relevance to the research purpose with economy in procedure.

The present study is based on primary survey in which an attempt has been made to know the adoption of e-banking technology, its relationship with demographic and psychological and psycho-graphical variables. The data has been collected by giving a structured printed questionnaire to bank customers. Before finalizing the questionnaire, a pilot survey has been conducted and on the basis of the difficulties which were faced during a pilot study, the format of the question has been modified and accordingly the questionnaire was finalized.
3.2.1 Objectives of the Study:

The research aims at enriching the knowledge and understanding of factors effecting the adoption of e-banking in India. Objective are as following:

Primary Objective:
- To study the adoption and use of Internet / electronic medium for banking transactions by individuals in India.
- To study the consumers’ perceptions regarding the issues and challenges of e-banking
- To understand a profile of e-banking users and non-users in India in terms of demographics and their personality related dimensions

Secondly Objective:
- To understand the reasons for not using e-banking facilities provided by their banks
- To explore the relationship between consumers’ perception about e-banking and their background variables.
- To understand the relationship between consumers’ perception about e-banking and their personality related dimensions.

3.2.2 Hypothesis to Be Tested:

Any hypothesis testing procedure starts with the formulation of an interesting hypothesis concerning the distribution or parameter of a certain random variable in the population. As a result of the test, we obtain a decision rule, which allows us to either reject or accept the hypothesis with a certain probability of error, referred to as the level of significance of the test.
Chi-Squared Test of Homogeneity

On occasion it might happen that there are several proportions in a sample of data to be tested simultaneously. An even more complex situation arises when the several populations have all been classified according to the same variable. We generally do not expect an equality of proportions for all the classes of all the populations. We do however, quite often need to test whether the proportions for each class are equal across all populations and whether this is true for each class. If this proves to be the case, we say the populations are homogeneous with respect to the variable of classification. The test used for this purpose is the Chi-Squared Test of Homogeneity, with hypotheses:

H0: the populations are homogeneous with respect to the variable of classification, against

H1: the populations are not homogeneous

The Chi-square Test of independence of attributes:

When performing tests of hypotheses, one often faces the situation in which a decision must be made as to whether or not two or more variables pertaining to the same population can be considered independent. In order to assess the independency of two attributes we use the contingency table formalism, which now, however, is applied to only one population whose variables can be categorized into two or more categories.

The Chi-Squared Test of Association allows the comparison of two attributes in a sample of data to determine if there is any relationship between them.

The idea behind this test is to compare the observed frequencies with the frequencies that would be expected if the null hypothesis of no association / statistical independence were true. By assuming the variables are independent, we can also predict an expected frequency for each cell in the contingency table.
If the value of the test statistic for the chi-squared test of association is too large, it indicates a poor agreement between the observed and expected frequencies and the null hypothesis of independence / no association is rejected.

It is a powerful and flexible procedure for analyzing associative relationships between a metric dependent variable and one or more independent variables. It is also to determine whether the independent variables explain a significant variation in the dependent variable; whether a relationship exists and set the mathematical equation relationship relating the independent and dependent variables (Malhotra, 2004). Several hypotheses to be tested based on the primary data are given below:

Summary of Hypothesis to be tested:

H₀: There is no significant difference for having number of Bank accounts amongst all the respondents.
H₀: All types of bank are equally preferred by the respondents for having bank account.
H₀: There is no significant difference between proportion of respondents having awareness of E-banking services offered by banks and proportion of respondents not having awareness of E-banking services offered by banks.
H₀: There is no significant difference amongst all the respondents for awareness of different E-banking services offered by bank.
H₀: There is no significant difference amongst different factors considered in influence for using e-banking services.
H₀: There is no significant difference amongst different problems identified while using e-banking services.
H₀: There is no significant difference amongst the use of different tools/devices considered for obtaining e-banking services.
H₀: There is no significant difference amongst preference of different types of transactions considered through e-banking.
H₀: There is no significant difference amongst the reasons considered for not using e-banking services.

H₀: There is no significant difference between proportion of respondents to whom bank educates and proportion of respondents to who bank does not educate about the e-banking services being offered.

H₀: There is no significant difference between proportion of respondents who aware and proportion of respondents who do not aware about the methods which can be taken up to secure the transaction.

H₀: There is no significant difference between proportion of respondents who aware and proportion of respondents who do not aware about the methods which can be undertaken to make any kind of fraud.

H₀: All the levels of satisfaction are equally preferred by the respondents with their bank’s e-banking services.

H₀: There is no association between CNU, CIJM, & CNS and age group of the respondents.

H₀: There is no association between CNU, CIJM, & CNS and gender of the respondents.

H₀: There is no association between CNU, CIJM, & CNS and qualification of the respondents.

H₀: There is no association between CNU, CIJM, & CNS and monthly income of the respondents.

H₀: There is no association between CNU, CIJM, & CNS and occupation of the respondents.

H₀: There is no association between ‘All time available’ factor which influence use of e-banking services and CNU, CIJM, & CNS

H₀: There is no association between ‘Ease of use’ factor which influence use of e-banking services and CNU, CIJM, & CNS

H₀: There is no association between ‘Convenience’ factor which influence use of e-banking services and CNU, CIJM, & CNS

H₀: There is no association between ‘Secured transaction’ factor which influence use of e-banking services and CNU, CIJM, & CNS

H₀: There is no association between ‘Direct access’ factor which influence use of e-banking services and CNU, CIJM, & CNS
H₀: There is no association between ‘Friends/Relatives’ factor which influence use of e-banking services and CNU, CIJM, & CNS
H₀: There is no association between ‘Status symbol’ factor which influence use of e-banking services and CNU, CIJM, & CNS
H₀: There is no association between the problem of ‘Time Consuming’ identified while using e-banking services and CNU, CIJM, & CNS
H₀: There is no association between the problem of ‘Insecure’ identified while using e-banking services and CNU, CIJM, & CNS
H₀: There is no association between the problem of ‘ATM out of order’ identified while using e-banking services and CNU, CIJM, & CNS
H₀: There is no association between the problem of ‘Amount debited but not withdrawn’ identified while using e-banking services and CNU, CIJM, & CNS
H₀: There is no association between the problem of ‘Check in mobile number’ identified while using e-banking services and CNU, CIJM, & CNS
H₀: There is no association between the problem of ‘Password together’ identified while using e-banking services and CNU, CIJM, & CNS
H₀: There is no association between the problem of ‘Card misplaced’ identified while using e-banking services and CNU, CIJM, & CNS
H₀: There is no association between the problem of ‘Misuses of Card’ identified while using e-banking services and CNU, CIJM, & CNS
H₀: There is no association between ‘ATM’ tool or device which is used to obtain e-banking services and CNU, CIJM, & CNS
H₀: There is no association between ‘Debit Card’ tool or device which is used to obtain e-banking services and CNU, CIJM, & CNS
H₀: There is no association between ‘Credit Card’ tool or device which is used to obtain e-banking services and CNU, CIJM, & CNS
H₀: There is no association between ‘Phone’ tool or device which is used to obtain e-banking services and CNU, CIJM, & CNS
H₀: There is no association between ‘Mobile’ tool or device which is used to obtain e-banking services and CNU, CIJM, & CNS
H₀: There is no association between ‘Internet’ tool or device which is used to obtain e-banking services and CNU, CIJM, & CNS
H0: There is no association between preference to do ‘Money transfer’ transaction by e-banking and CNU, CIJM, & CNS
H0: There is no association between preference to do ‘Checking of your current balance’ transaction by e-banking and CNU, CIJM, & CNS
H0: There is no association between preference to do ‘Create fixed deposits online’ transaction by e-banking and CNU, CIJM, & CNS
H0: There is no association between preference to do ‘Request a Demand draft’ transaction by e-banking and CNU, CIJM, & CNS
H0: There is no association between preference to do ‘Pay bills’ transaction by e-banking and CNU, CIJM, & CNS
H0: There is no association between preference to do ‘Order a cheque Book’ transaction by e-banking and CNU, CIJM, & CNS
H0: There is no association between preference to do ‘Request stop payment on a cheque’ transaction by e-banking and CNU, CIJM, & CNS
H0: There is no association between a reason ‘No need (satisfaction with traditional banking)’ for not using the e-banking services and CNU, CIJM, & CNS
H0: There is no association between a reason ‘It is difficult process’ for not using the e-banking services and CNU, CIJM, & CNS
H0: There is no association between a reason ‘Fear of insecure transaction’ for not using the e-banking services and CNU, CIJM, & CNS
H0: There is no association between a reason ‘No access to Internet/mobile/other’ for not using the e-banking services and CNU, CIJM, CNS
H0: There is no association between a reason ‘Lack of operation knowledge’ for not using the e-banking services and CNU, CIJM, & CNS
H0: There is no association between a reason ‘Hidden costs’ for not using the e-banking services and CNU, CIJM, & CNS
H0: There is no association between different Satisfaction levels with your bank’s E-banking services and CNU, CIJM, & CNS
3.2.3 Data Collection:

The primary and secondary sources of data collected were adopted in this research work.

Primary Source: Data in the category were collected mainly through field survey and e-mail survey and telephonic survey.

The various methods were adopted independently to reduce the incidence of bias or subjective views about the subject on investigation.

Secondary Source: Secondary data in this research work were collected through the review of related literature; the relevant literatures were obtained from books journals, magazines, and newspapers, Internet website etc.

The secondary data sources primarily consisted of the following:

- Published studies in various international and national journals and conference proceedings, those studies which deal with topics such as the adoption studies on electronic banking services, studies on customer satisfaction and service quality perception of these channels, theoretical frameworks pertaining to adoption of innovation, service quality and so on.
- Articles published in periodicals relating to the above subjects.
- Information contained in websites such as RBI website, websites of various banks in India, website of Banknet India and so on.
- Unpublished studies pertaining to the above topics.

3.2.4 Design and Selection of Sample:

Sampling is the process of selecting a sufficient number of elements from the population, so that the sample and an understanding of its properties of characteristics would make it possible for us to generalize such properties or characteristics to the population elements (Sekaran, 2003).
3.2.4.1 Target Population/ Sample Frame:

Population refers to the entire group of people, events or things of interest that researcher wishes to investigate (Sekaran, 2003). The populations of this study consist of all customers of the Bank.

3.2.4.2 Sample Size:

According to Malhotra (2004), sampling size refers to the numbers of elements to be included in the study. Determining the sample size is complex and involves several qualitative and quantitative considerations. Large sample give more reliable results than smaller samples.

Sample is a subset of the population (Sekaran, 2003). The rules of thumb for determining sample size, which are sample sizes larger than 30 and less than 500, are appropriate for most research. Where samples are to be broken into sub samples (male/female, etc), a minimum sample size of 30 for each category is necessary (Roscoe, 1975).

For the present study, more than 1600 questionnaires were distributed, out of which about 1,100 filled-in questionnaires were collected back. Based on the scrutiny of the available questionnaires, about 100 questionnaires were removed from final Analysis. Thus, the present study is based on data collected through 1,000 questionnaires that were selected for final Analysis:

3.2.4.3 Sampling Techniques:

For the purpose of sample selection, a non-probability convenience sampling method was adopted. The contact methods used were personal contact survey, mail survey, telephonic survey method and finally a branch intercept method was also used.
3.3 Instrument for Data Collection:

A questionnaire design is an integral part of the research project. There are two major types of question in a questionnaire. Firstly, the Open-ended question allows respondents to answer in any way they choose. When using open ended questions, responses need to be coded for content Analysis: (Miles & Huberman, 1994; Ryan & Bernard, 2000).

Moreover, these coded data are not suited to powerful parametric statistical Analysis: (Malhotra et al. 1996). In addition, open questions require more effort from respondents and more space on the questionnaire for responses, and are therefore unsuited as the key source of questioning in mail based survey. The respondents’ effort required to complete open ended questions potentially leads to articulation bias, where attitudes and opinion are over or under emphasized due to the differing amount of detail given by respondents. As confirmed in the results of the questionnaire, in some instances data yielded from open questioning can be irrelevant.

Secondly, closed questions offer several practical advantages that are well suited to the research problem and methodology. They are ideal because they are quick, require less effort for respondents to complete, and response categories can clarify the meaning of the question being answered, and less articulate respondents are not disadvantaged. Closed questions yield responses that are more easily coded and analyzed (de Vaus, 2002; Dillman, 2000; Sekaran, 2003) because responses are limited to alternatives stated (Malhotra et al., 1996).

A questionnaire was used as the main form of data collection in this research. The questionnaire was distributed to the customer of Bank. A covering letter was attached together with the questionnaire by explaining the purpose of this research, assuring the confidentiality of their response and instructing them to complete the questions. Just only customer that has experience with internet banking with Bank only has been selected as respondents’ for this research. The most of respondent came from walk in customer that is willing to participate in this study.
A structured questionnaire was used as an instrument for data collection. The questionnaire includes dichotomous bi-polar scale, rating scale and Likert scale. There personality-related construct are also used in this questionnaire. They are:

1. Consumer Need for Uniqueness (CNU)
2. Consumer Independent Judgment Making (CIJM)
3. Consumer Novelty Seeking (CNS)

CNU scale attempts to measure “Consumer Need for Uniqueness”. A score in the range of 28 to 35 indicates a high need for uniqueness. Such consumers would like to buy a unique product earlier than other consumers. A score in the range of 7 to 14 indicates a low need for uniqueness. It is intended to find out relationship between CNU score and consumers’ perception / adoption of E-banking technology.

Another scale - also known as CIJM scale – is used. CIJM stands for “Consumer Independent Judgement-Making”. It is defined as the degree to which an individual makes innovation decisions independently of communicated experience of others. Here, item no. 1 is to be reverse scored.

The interpretation is based on score. The minimum score is 6 and maximum score is 42 here. The score in the range of 30 to 42 indicates that an individual is high on independent judgement-making. If the score is between 6 to 18, the individual is low on independent judgement-making. An attempt has been made to find out relationship between CIJM score and consumers’ perception / adoption of E-banking technology.

The their scale used in this study is related to the measurement of “Consumer Novelty Seeking”. Item no. 7 is to be reverse scored. It is defined as an individual’s desire to seek out new product information. It produces a score in the range of 8 to 56. A score in the range of 40 to 56 indicates a high level of desire to seek out new product information, whereas a score in the range of 8 to 24 indicates a low desire to seek out new product information. The study aims at exploring the relationship between CNS score and consumers’ perception / adoption of E-banking technology.
3.4 Design of Research:

According to Sekaran (2003), often identifying the variables in developing the theoretical framework, the next step is to design the research in a way that the data can be gathered and analyzed. The research design, which involves a series of rational decision making choices, was originally presented in a simple manner.

According to Malholtra (2004), research design is a framework or blueprint for conducting marketing research project. It details the procedures necessary for obtaining the information needed to structure and to solve marketing research problems. It lays the foundation for conducting the project. A good research design will ensure that the marketing research project is conducted effectively and efficiently. In this study, the research design that is being used is descriptive study and it will help the researcher to better describe the research problem. A descriptive study is undertaken in order to ascertain and able to describe the characteristics of the variables of interest in a situation (Sekaran, 2003).

Present study is a descriptive research and attempts to identify relationship between consumers’ demographic variable and their adoption of e-banking technology. Moreover, it is also attempted to find out relationship, if any, between consumers’ perception / adoption of e-banking with 3 different personality-related dimensions as described above.

3.5 Time Dimension of the Study:

The time duration of the present research study is from Feb-2010 to Feb-2012.

3.6 Topical Scope of the Study:

The topical scope of the study is limited to consumers’ perception of e-banking technology, adoption of e-banking technology and the factors associated with the adoption of e-banking technology.
3.7 The Research Environment:

This is a field-based study and hence the research environment is filed.

Data Analysis:

The data collected are then processed using the Statistical Package of Social Science (SPSS) 16.0 computer software. The function of SPSS is to help researcher to analyze the result of the questionnaire and then to be interpreted the finding. The research tools that the researcher intends to apply in this thesis are Frequency Distribution, Descriptive Statistics Analysis:, Cross Tabulation, Chi-square Test, Population Proportion Test, Difference between two Population Proportion Test, Kruskal wallis Test, Kendall's tau-c Test, Conover-Inman Test, Cramer V Test.

Frequency Distribution:

Frequency distributions were obtained for all the personal data or classification variables for example race, gender, age, frequency of customer respondent.

Descriptive Statistics Analysis:

According to Sekaran (2003), a descriptive statistics is a statistics that describes the phenomenon of interest. It is used when the researcher is interested to know what is the average score when a set of figures are involved as well as extend of variability in the set. Therefore, the researcher will used this type of research in order to determine the customers’ perception towards service quality in the container operation

Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample and the measures with simple graphics analysis. Descriptive statistics are typically distinguished from inferential statistics. With descriptive statistics we are simply describing what is or what the data shows. We have used some descriptive statistics like Frequency Distributions, Cross tabs and charts.
(A) Frequency Distribution:

A table that lists all the categories or classes and the numbers of values that belong to each of these categories or classes is called frequency distribution.

A frequency gives the numbers of observations or classes fall into each group or category.

(B) Cross tabs: [Contingency table]

While frequencies show the number of cases in each level of category variable they don’t give information about the relationship or association between categorical variables.

Cross tabs procedure is used for investigating about interaction of the two categorical variables.

A contingency table is a way of summarising the relationship between variables, each of which can take only a small number of values. It is a table of frequencies classified according to the values of the variables in question.

When a population is classified according to two variables it is said to have been 'cross-classified' or subjected to a two-way classification. Higher classifications are also possible.

A contingency table is used to summarise categorical data. It may be enhanced by including the percentages that fall into each category.

What you find in the rows of a contingency table is contingent upon (dependent upon) what you find in the columns.

(C) Charts:

Once the data have been collected, the crucial problem becomes learning, whatever we can, from the data. Graph is a powerful mean of describing the data set. A large data set is required to be presented in graphical form that can capture the structure of underlying data. A quick glance at the picture elucidates the point easily than does a
Pie charts:
Pie chart is also called ‘angular charts’. A circle divided into portions that represent the relative frequencies or percentages of different categories or classes. This chart represent the value of the variable in the relative form of 360°. The area of 360° is divided into slice.

Inferential statistics:

With inferential statistics, we try to reach to conclusions that extend beyond the immediate data alone. This includes different techniques of estimation and testing of hypotheses.

We have checked the normality of the collected data and found that data is not normal, so we used inferential statistics such as nonparametric tests. As our sample is large, we use z-proportional test.

Cramer's V:
If Phi is calculated for tables larger than two-by-two, there is no upper limit to its value. Therefore, the Phi statistic is not printed for tables greater than two-by-two. Instead, Cramer's V is printed. Cramer's V adjusts the Phi for the number of rows and columns so that its maximum value is also one. It may be interpreted exactly like the Phi (e.g., a large Cramer's V indicates a high degree of association between the two variables).

Z- Test of Proportional test:
If the observations on various items or objects are categorized into two classes A and B, we often want to test the hypothesis whether the proportion of items in a particular class, say A, is P_0 or not.
Confidence Interval for a Proportion:

A confidence interval gives us some idea of the range of values which an unknown population parameter (such as the mean or variance) is likely to take based on a given set of sample data.

Sometimes we are interested in the proportion of responses that fall into one of two categories. For example, a firm may wish to know what proportion of their customers pay by credit card as opposed to those who pay by cash; the manager of a TV station may wish to know what percentage of households in a certain town have more than one TV set; a doctor may be interested in the proportion of patients who benefited from a new drug as opposed to those who didn't, etc. A confidence interval for a proportion would specify a range of values within which the true population proportion may lie, for such examples.

The procedure for obtaining such an interval is based on the proportion, p of a sample from the overall population.

Confidence Interval for the Difference between Two Proportions:

A confidence interval gives us some idea of the range of values which an unknown population parameter (such as the mean or variance) is likely to take based on a given set of sample data.

Many occasions arise where we have to compare the proportions of two different populations. For example, a firm may want to compare the proportions of defective items produced by different machines; medical researchers may want to compare the proportions of men and women who suffer heart attacks etc. A confidence interval for the difference between two proportions would specify a range of values within which the difference between the two true population proportions may lie, for such examples.

The procedure for obtaining such an interval is based on the sample proportions, p1 and p2, from their respective overall populations.
The Kruskal-Wallis Test:

The Kruskal-wallis test is the non-parametric counterpart of one-way ANOVA test. The test assess whether k-independent samples are from the same population or from populations with continuous distribution and the same median for variable being tested. The variable being tested must be at least of ordinal type. Thus, one starts by assigning natural ordered ranks to the sample values, from the smallest to the largest. Tied ranks are substituted by their average.

The Kruskal-Wallis test uses more information than the median test. As a consequence, the Kruskal-Wallis test is usually more powerful, and is preferred when the available data are measured on at least the ordinal scale.

Kendall’s Tau Test:

This is a measure of correlation between two ordinal-level variables. It is most appropriate for square tables. For any sample of n observations, there are \([n (n-1)/2]\) possible comparisons of points \((X_I, Y_I)\) and \((X_J, Y_J)\).

Let \(C\) = Number of pairs that are concordant.

Let \(D\) = Number of pairs that are not concordant.

\[
Kendall’s \ Tau = \frac{(C - D)}{\left(\frac{n^2}{2}\right)}
\]

Obviously, \(Tau\) has the range: -1 \(\leq\) \(Tau\) \(\leq\) +1

Kendall's Tau-b:

Kendall's Tau-b is a measure of association often used with but not limited to 2-by-2 tables. It is computed as the excess of concordant over discordant pairs \((C - D)\), divided by a term representing the geometric mean between the number of pairs not tied on \(X (X_0)\) and the number not tied on \(Y (Y_0)\):
\[\text{Tau-b} = \frac{C - D}{\text{SQRT} [(C + D + Y_0)(C + D + Y_0)]} \]

There is no well-defined intuitive meaning for \text{Tau-b}, which is the surplus of concordant over discordant pairs as a percentage of concordant, discordant, and approximately one-half of tied pairs. The rationale for this is that if the direction of causation is unknown, then the surplus of concordant over discordant pairs should be compared with the total of all relevant pairs, where those relevant are the concordant pairs, the discordant pairs, plus either the X-ties or Y-ties but not both, and since direction is not known, the geometric mean is used as an estimate of relevant tied pairs.

\text{Tau-b} requires binary or ordinal data. It reaches 1.0 (or -1.0 for negative relationships) only for square tables when all entries are on one diagonal. \text{Tau-b} equals 0 under statistical independence for both square and non-square tables. \text{Tau-c} is used for non-square tables.

\textbf{Tau-c:}

Kendall's \text{Tau-c}, also called \textit{Kendall-Stuart Tau-c}, is a variant of \text{Tau-b} for larger tables. It equals the excess of concordant over discordant pairs, multiplied by a term representing an adjustment for the size of the table.

\[\text{Tau-c} = \frac{(C - D)\times[2m/(n^2\times(m-1))]}{\text{}} \]

Where: \(m \) = the number of rows or columns, whichever is smaller

\(n \) = the sample size.

\textbf{Cross Tabulation:}

Cross Tabulation is a statistical that describes two or more variable simultaneously and results in tables that reflect the joint distribution of two or more variables that have a limited number of categories or distinct value. Thus, the frequency distribution of one variable is subdivided according to the values or categories of the other variables (Malhotra, 2004).
Pearson Correlation Matrix:

The purpose of this matrix is to determining whether there is a relationship between independent variables and dependent variable. If the probability value (P-Value) is smaller than 0.05 (p<0.05), the result will be significant, which means that there is a relationship between independent variable and dependent variable. But if the probability value (P-Value) is greater than 0.05 (p>0.05), it means that there is no relationship between independent variable and dependent variable.

3.8 Limitaition:

Due to limited time and availability of resources, the main limitation is that this study is based on just 1000 participants. The potentiality of common methods bias by adopting single questionnaire to measure all constructs. For analysis of survey only CNS, CIJM and CNS Personality Factors were used there is possibility of surveying the possible influence caused by the sub factors of technology and readiness in future.

3.9 Organization of the Thesis:

The outcome of the research has been presented in this thesis as per following chapterisation scheme.

Chapter-1: Overview of Indian Banking Sector:

An overview of history of banking and Indian banking sector has been provided in this chapter

Chapter-2: Review of Literature:

A detailed review of literature pertaining to banking, e-banking and adoption of e-banking and Internet banking has been provided in this chapter. The review of
relevant literature has finally provided a research gap for undertaking the present study.

Chapter 3: Research Methodology:
This chapter explains in detail the research methodology adopted for the present study. It justifies the selection of method for research, explains why survey was conducted and from whom information was collected. This chapter explains all process during research from data collection to data Analysis:

Chapter 4: Data Analysis and Interpretation:

This chapter is dedicated to the presentation of the research findings and Analysis:. Based on the Analysis of the data collected, interesting findings have emerged leading to a better understanding of the adoption process of electronic banking in India.

Appropriate statistical tools have been used for Analysis: of data. Some of tools used for data Analysis: include Chi-square, correlation Analysis: in addition to the basic statistical tools.

Chapter 5: Findings, Conclusion and Recommendation:

This chapter provides a detailed discussion on data Analysis: and presents concluding remarks based on the research findings. It also provides recommendations for increasing the adoption level of electronic banking technology in India.