INDEX

<table>
<thead>
<tr>
<th>Greeting</th>
<th>i-iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>v-x</td>
</tr>
</tbody>
</table>

CHAPTER – 1 Introduction 1-49

1.1 Semiconductor Fundamentals 2
1.2 History of Semiconductor Research 3
1.3 Introduction of Nanomaterials 4
1.4 History and Early Observations of Nanomaterials 9
1.5 Classification of Nanomaterials 11
1.6 Synthesis of Nanomaterials 14
1.7 Effect of Size on Properties of Nanomaterials 19
1.8 Applications of Nanomaterials 20
1.9 Development of Nanoelectronics 22
1.10 Choosing a Problem 28
1.11 Literature Survey of Tin Selenide (SnSe) 32
1.12 Introduction of Group IV–VI and Tin Selenide (SnSe) 32
1.13 Properties of Tin Selenide (SnSe) 35
 1.13.1 Structural Properties 35
 1.13.2 Electrical Properties 36
 1.13.3 Optical Properties 38
1.14 Importance of Tin Selenide (SnSe) 39
 References 41

CHAPTER – 2 Growth of Nanocrystalline Tin Selenide (SnSe) 50-93

Thin Films by Spin Coating Technique and its Chemical Composition Study 50

2.1 Importance of Deposition Technology in Modern Fabrication Processes 51
2.2 Overview of Various Thin-Film Deposition Technologies 53
 2.2.1 Evaporative Methods 55
 2.2.2 Glow-Discharge Technologies 56
 2.2.3 Gas-Phase Chemical Processes 62
 2.2.4 Liquid-Phase Chemical Formation 68
2.3 Choice Of Deposition Technique 72
 2.3.1 Spin Coating 73
2.4 Energy Dispersive Analysis of X-rays (EDAX) 83
 2.4.1 Results and Discussion 86
2.5 Conclusion 88
 References 89
CHAPTER – 3 Structural Characterization of Nanocrystalline Tin Selenide (SnSe) Thin Films

3.1 X-ray Diffraction
 3.1.1 Results and Discussion
 3.1.1.1 Lattice Parameters Determination
 3.1.1.2 Grain Size, Micro Strain And Dislocation Density Determination

3.2 Transmission Electron Microscopy

3.3 Surface Study by Atomic Force Microscopy
 3.3.1 General Idea of an Atomic Force Microscopy
 3.3.2 Intermolecular Microscopic Interaction
 3.3.3 Contact Mode AFM
 3.3.4 Tapping Mode AFM
 3.3.5 Non Contact Mode AFM
 3.3.6 Main Components of AFM
 3.3.7 Background / Surface Roughness Parameters and Statistical Measures With AFM
 3.3.8 One-Dimensional Surface Roughness Parameters (Roughness Amplitude Parameters)
 3.3.9 Results and Discussion

3.4 Scanning Electron Microscopy

3.5 Conclusion

References

CHAPTER – 4 Optical Characterization of Nanocrystalline Tin Selenide (SnSe) Thin Films

4.1 Introduction

4.2 Optical Absorption
 4.2.1 Fundamental Absorption
 4.2.2 Direct and Indirect Transitions
 4.2.3 Direct Allowed Transition
 4.2.4 Direct Forbidden Transitions
 4.2.5 Indirect Transition Between Indirect Valleys

4.3 Experimental
 4.3.1 UV-VIS-NIR Spectrophotometer
 4.3.2 Determination of Band Gap and Other Optical Parameters

Conclusion

References
CHAPTER – 5 Electrical Characterization of Nanocrystalline Tin Selenide (SnSe) Thin Films

5.1 Introduction 170
5.2 High Temperature Resistivity Measurements 170
 5.2.1 Experimental Setup 170
 5.2.2 Results and Discussions 172
5.3 Measurement of Dielectric Properties 181
 5.3.1 High Temperature LCR Measurement Set Up 181
 5.3.2 Experimental Details 182
 5.3.3 Results and Discussion 183
5.4 Thermoelectric Power Measurements 188
 5.4.1 Experimental Details 190
 5.4.2 Results and Discussion 193
5.5 Conclusion 195
References 197

CHAPTER – 6 Fabrication of p-SnSe/n-MoSe₂ Hetrojunction Diode and its I-V-T and C-V Characteristics

6.1 Literature Survey on Heterojunction 201
6.2 Structural, Electrical and Optical Properties of MoSe₂ 203
6.3 Crystal Growth of MoSe₂ 207
6.4 Basic Heterojunction Model 210
6.5 Current Transport in Heterojunction Diode 213
6.6 Barrier Height Inhomogeneity 215
6.7 Fabrication of p-SnSe/n-MoSe₂ Heterojunction Diodes 217
6.8 I-V-T and C-V Measurements 218
6.9 Results and Discussions 220
 6.9.1 Stability of Prepared Diodes 220
 6.9.2 I-V-T Analysis 222
 6.9.3 Barrier Height Inhomogeneities 234
6.10 Band Diagram Construction using C-V Measurement 236
6.11 Conclusion 241
References 243

CHAPTER – 7 Conclusion and Future Scope

7.1 Final Remarks 250
7.2 Future Direction 253

Appendix I 256
Appendix II 257
Appendix III 258