CHAPTER 3
SEMI-OPEN, PRE-OPEN, α-OPEN, β-OPEN MAPPINGS IN TOPOLOGICAL ORDERED SPACES.

Introduction: For semi-open sets we define the following.

\[A^{iso} = \bigcup \{ G / G \text{ is an increasing semi-open subset of } X \text{ contained in } A \} , \]

\[A^{dso} = \bigcup \{ G / G \text{ is a decreasing semi-open subset of } X \text{ contained in } A \} \text{ and} \]

\[A^{bso} = \bigcup \{ G / G \text{ is a balanced semi-open subset of } X \text{ contained in } A \} . \]

Clearly \(A^{iso} \) (resp. \(A^{dso}, A^{bso} \)) is the largest increasing (resp. decreasing, balanced) semi-open set contained in \(A \).
3.1 I-SEMI-OPEN, D-SEMI-OPEN, B-SEMI-OPEN MAPS.

We introduce the following.

DEFINITION 3.1.01. A function $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ is called an I–semi-open [5] (resp.a D-semi-open, a B-semi-open) map if $f(G) \in \text{ISO}(X^*)$ (resp. $f(G) \in \text{DSO}(X^*)$, $f(G) \in \text{BSO}(X^*)$) whenever G is an open subset of (X, τ)

It is evident that every x-semi-open map is a semi-open map for $x=I$, D, B and every B-semi-open is both I–semi-open and D-semi-open. The following example shows that a semi-open map need not be a x-semi-open map for $X=I$, D, B.

EXAMPLE 3.1.1. Let $X=\{a, b, c\}$, $\tau=\{\emptyset, X, \{a\} , \{b\}, \{a, b\}\}$ and $\leq=\{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ, \leq) is a topological ordered space. Let f be the identity map from (X, τ, \leq) onto itself. Since f is the identity map from (X, τ, \leq) on to itself, every open set in (X, τ) is mapped onto an open set and hence it is a semi-open set in (X, τ) (since every
open set is a semi-open set). Therefore \(f \) is a semi-open map.

\(\{b\} \) is an open set in \((X, \tau)\). \(f(\{b\}) = \{b\}, i(\{b\}) = \{b, c\} \neq \{b\} \). Therefore \(f(\{b\}) \notin ISO(X) \). Hence \(f \) is not an I-semi-open map. \(d(\{b\}) = \{a, b\} \neq \{b\} \).

=> \(f(\{b\}) \notin DSO(X) \). Therefore \(f \) is not a D-semi-open map and hence \(f \) is not a B-semi-open map.

Thus a semi-open map need not be a \(x \)-semi-open map for \(x = I, D, B \).

Following example shows that D-semi-open map need not be a B-semi-open map.

EXAMPLE 3.1.02 Let \(X = \{a, b, c\} = X^* \), \(\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} = \tau^* \), \(\leq = \{(a, a), (b, b), (c, c), (a, c)\} \) and \(\leq^* = \{(a, a), (b, b), (c, c), (a, c), (b, c)\} \). Let \(f \) be the identity map from \((X, \tau, \leq)\) onto \((X^*, \tau^*, \leq^*)\). \(\phi \) is the open set in \((X, \tau)\), \(f(\phi) = \phi \) is a semi-open set in \((X^*, \tau^*)\), \(d(\phi) = \phi \). \(X \) is the open set in \((X, \tau)\), \(f(X) = X^* \) is a semi-open set in \((X^*, \tau^*)\), \(d(X^*) = X^* \). \(\{a\} \) is an open set in \((X, \tau)\), \(f(\{a\}) = \{a\} \) is a semi-open set in \((X^*, \tau^*)\), \(d(\{a\}) = \{a\} \). \(\{b\} \) is an open set in \((X, \tau)\),
f({b}) = {b} is a semi-open set in (X^*, τ^*), d({b}) = {b}.
G = {a, b} is an open set in (X, τ), f({a, b}) = {a, b} is a semi-open set in (X^*, τ^*), d({a, b}) = {a, b}. Therefore $f(G) \in \text{DSO}(X^*)$, for every open set G in (X, τ).
Therefore f is a D-semi-open map.

G = {a} is an open set in (X, τ), f({a}) = {a}, i({a}) = {a, c} ≠ {a}. => f({a}) $\notin \text{ISO}(X^*)$. Therefore f is not an I-semi-open map and hence f is not a B-semi-open map.

Thus a D-semi-open map need not be a B-semi-open map.

EXAMPLE 3.1.03. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{a, c\}\} = \tau^*$, $\leq = \{(a, a), (b, b), (c, c), (c, a), (b, c), (b, a)\} = \leq^*$. Define $f:(X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be the identity map. ϕ is the open set in (X, τ), $f(\phi) = \phi$ is a semi-open set in (X^*, τ^*), i(\phi) = \phi. X is the open set in (X, τ), $f(X) = X^*$ is a semi-open set in (X^*, τ^*), i(X*) = X*. \{a\} is an open set in (X, τ), $f(\{a\}) = \{a\}$ is a semi-open set in (X^*, τ^*), i(\{a\}) = \{a\}. \{a, c\} is an open set in (X, τ), $f(\{a, c\}) = \{a, c\}$ is a semi-open set in (X^*, τ^*), i(\{a, c\}) = \{a, c\}. Therefore
f(G) \in \text{ISO}(X^*), \text{ for every open set } G \text{ in } (X, \tau) \text{ and consequently } f \text{ is an I-semi-open map.}

\{a\} \text{ is an open set in } (X, \tau), \ f(\{a\}) = \{a\}, \ d(\{a\}) = \{a, b, c\} \neq \{a\}. \ \{a\} \text{ is not a decreasing set in } (X^*, \tau^*, \leq^*). \Rightarrow f(\{a\}) \notin \text{DSO}(X^*). \text{ Therefore } f \text{ is not a D-semi-open map and hence } f \text{ is not a B-semi-open map.}

Thus an I-semi-open map need not be a B-semi-open map.

3.01. The above observations are given in the following diagram.

For a function f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)
LEMMA 3.1.01. Let A be any subset of a topological ordered space (X, τ, \leq). Then

1. $C(dscl(A)) = [C(A)]^{iso}$.
2. $C(iscl(A)) = [C(A)]^{iso}$.
3. $C(bscl(A)) = [C(A)]^{bso}$.

Proof. 1) \(C(dscl(A)) = C\{ \cap F / F \text{ is decreasing semi-closed subset of } X \text{ containing } A \} \)

\[= \cup \{ C(F) / F \text{ is decreasing semi-closed subset of } X \text{ containing } A \} \]

\[= \cup \{ G / G \text{ is an increasing semi-open subset of } X \text{ contained in } C(A) \} \]

\[= C(A)^{iso}. \]

Proofs of (2) and (3) are parallel to that of (1).

Following theorem characterizes I-semi-open functions.

THEOREM 3.1.01. For any function $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$, the following statements are equivalent.

1) f is an I–semi-open map.

2) $f(A^\circ) \subseteq f(A)^{iso}$ for any $A \subseteq X$.

3). \([f^{-1}(B)]^\circ = f^{-1}(B^{iso})\) for any \(B \subseteq X^*\).

Proof. (1) \(\Rightarrow\) (3) Since \((f^{-1}(B))^0\) is open in \(X\) and \(f\) is I-semi-open, \(f((f^{-1}(B))^0) \in \text{ISO}(X^*)\) Clearly \(f[(f^{-1}(B))^0] \subseteq f[f^{-1}(B)] \subseteq B\). Then \(f[(f^{-1}(B))^0] \subseteq B^{iso}\), since \(B^{iso}\) is the largest increasing semi-open set contained in \(B\) Therefore \((f^{-1}(B))^0 \subseteq f^{-1}(B^{iso})\).

(3) \(\Rightarrow\) (2) Replacing \(B\) by \(f(A)\) in (3), we have \([f^{-1}(f(A))]^0 \subseteq f^{-1}(f(A)^{iso})\).

Since \(A^\circ \subseteq [f^{-1}(f(A))]^0\) we have \(A^\circ \subseteq f^{-1}(f(A)^{iso}) \Rightarrow f(A^\circ) \subseteq f(f^{-1}[f(A)^{iso}]) \subseteq [f(A)]^{iso}\).

Hence \(f(A^\circ) \subseteq [f(A)]^{iso}\).

(2) \(\Rightarrow\) (1) Let \(G\) be any open set in \(X\). Then \(f(G) = f(G^\circ) \subseteq [f(G)]^{iso}\). But \([f(G)]^{iso} \subseteq f(G)\). Therefore \(f\) is an I-semi-open map.

In the light of above theorem the following characterizations of D-semi-open, B-semi-open maps are obtained trivially.
THEOREM 3.1.02. For any function \(f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*) \), the following statements are equivalent.

1. \(f \) is D–semi-open map.
2. \(f(A^\circ) \subseteq [f(A)]^{dso} \) for any \(A \subseteq X \).
3. \([f^{-1}(B)]^\circ \subseteq f^{-1}(B^{dso}) \) for any \(B \subseteq X^* \).

THEOREM 3.1.03. For any function \(f: (X, \tau, \leq) \to (X^*, \tau^*, \leq^*) \) the following statements are equivalent.

1. \(f \) is B – semi-open map.
2. \(f(A^\circ) \subseteq [f(A)]^{bso} \) for any \(A \subseteq X \).
3. \([f^{-1}(B)]^\circ \subseteq f^{-1}(B^{bso}) \) for any \(B \subseteq X^* \).

THEOREM 3.1.04. Let \(f : (X, \tau, \leq_1) \to (Y, \sigma, \leq_2) \) and \(g : (Y, \sigma, \leq_2) \to (Z, \eta, \leq_3) \) be any two mappings, then \(g \circ f : (X, \tau, \leq_1) \to (Z, \eta, \leq_3) \) is \(x \)-semi-open if \(f \) is open and \(g \) is \(x \)-semi-open for \(x = I, D, B \).

Proof. Let \(G \) be an open set in \((X, \tau)\). Since \(f \) is open map, \(f(G) \) is an open set in \((Y, \sigma)\). Since \(g \) is \(x \)-semi open map, \(g(f(G)) \) is \(x \)-semi-open set in \((Z, \eta)\), for \(x = I, D, B \). \(\Rightarrow \) \(g \circ f (G) \) is \(x \)-semi open set in \((Z, \eta)\) for
x-I,D,B. Therefore gof is x-semi open map for x=I,D,B.

3.2 I-PRE-OPEN, D-PRE-OPEN AND B-PRE-OPEN MAPS.

Introduction: We define the following for pre-open sets.

\[A_{ipo} = \bigcup \{ G / G \text{ is an increasing pre-open subset of } X \text{ contained in } A \}, \]

\[A_{dpo} = \bigcup \{ G / G \text{ is a decreasing pre-open subset of } X \text{ contained in } A \} \]

\[A_{bpo} = \bigcup \{ G / G \text{ is a balanced pre-open subset of } X \text{ contained in } A \}. \]

Clearly \(A_{ipo} \) (resp. \(A_{dpo}, A_{bpo} \)) is the largest increasing (resp. decreasing, balanced) pre-open set contained in A.

We introduce the following

DEFINITION 3.2.01. A function \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \) is called an I-pre-open map [4] (resp. D-pre-open, B-pre-open map if \(f(G) \in IPO(X^*) \) (resp. \(f(G) \)

\[\in DPO(X^*), f(G) \in BPO(X^*) \text{ whenever } G \text{ is an open subset of } (X, \tau, \leq). \]

It is evident that every \(x \)-pre-open map is an \(x \)-pre-open map for \(x = I, D, B \) and that every \(B \)-pre-open map is both \(I \)-pre-open and \(D \)-pre-open.

Following example shows that a \(\text{pre-open map} \) need not be \(x \)-pre-open for \(x = I, D, B \). It needs reference from example 1.1.01.

EXAMPLE 3.2.01. Let \(X = \{a, b, c\} = X^*, \tau = \{\emptyset, X, \{a\}, \{b\}\}, \{a, b\} = \tau^* \) and \(\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\} \) clearly \((X, \tau, \leq)\) is a topological ordered space. Let \(f \) be the identity map from \((X, \tau, \leq)\) onto itself. Since \(f \) is the identity map, every open set in \((X, \tau)\) is mapped onto an open set and hence it is a pre-open set (Since every open set is a pre-open set). Therefore \(f \) is a pre-open map.

\{b\} is an open set in \((X, \tau)\), \(f(\{b\}) = \{b\}, i(\{b\}) = \{b\} \). \(\Rightarrow f(\{b\}) \notin IPO(X) \).

Therefore \(f \) is not an \(I \)-pre-open map, \(\{b\} \) is an open set in \((X, \tau)\), \(f(\{b\}) = \{b\}, d(\{b\}) = \{a, b\} \neq \{b\} \). \(\Rightarrow f(\{b\}) \)

\[\notin \text{DPO}(X).\] Therefore \(f\) is not a D-pre-open map and consequently \(f\) is not a B-pre-open map.

Thus a pre-open map need not be a \(x\)-pre-open map for \(x=I, D, B\).

Following example shows that a D-pre-open map need not be a B-pre-open map. It needs reference from example 1.1.01.

EXAMPLE 3.2.02. Let \(X=\{a, b, c\} = X^*, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*, \leq =\{(a, a), (b, b), (c, c), (a, c)\} \) and \(\leq^* =\{(a, a), (b, b), (c, c), (a, c), (b, c)\}\). Let \(f\) be the identity map from \((X, \tau, \leq)\) onto \((X^*, \tau^*, \leq^*)\). \(\emptyset\) is the open set in \((X, \tau)\), \(f(\emptyset) = \emptyset\) is a pre-open set in \((X^*, \tau^*)\) \(d(\emptyset) = \emptyset\). \(X\) is the open set in \((X, \tau)\), \(f(X) = X^*\) is a pre-open set in \((X^*, \tau^*)\), \(d(X^*) = X^*\). \(\{a\}\) is an open set in \((X, \tau)\), \(f(\{a\}) = \{a\}\) is a pre-open set in \((X^*, \tau^*)\), \(d(\{a\}) = \{a\}\). \(\{b\}\) is an open set in \((X, \tau)\), \(f(\{b\}) = \{b\}\) be an a pre-open set in \((X^*, \tau^*)\), \(d(\{b\}) = \{b\}\). \(\{a, b\}\) is an open set in \((X, \tau)\), \(f(\{a, b\}) = \{a, b\}\) is a pre-open set in \((X^*, \tau^*)\), \(d(\{a, b\}) = \{a, b\}\). \(\Rightarrow f(G) \in \text{DPO}(X^*)\),
whenever \(G \) is an open set in \((X, \tau)\). Therefore \(f \) is a D-pre-open map.

\{a\} is an open set in \((X, \tau)\), \(f(\{a\}) = \{a\}, i(\{a\}) = \{a, c\} \neq \{a\} \Rightarrow f(\{a\}) \notin IPO(X^*). \) Therefore \(f \) is not an I-pre-open map and hence \(f \) is not a B-pre-open map.

Thus a D-pre-open map need not be a B-pre-open map.

Following example shows that I-pre-open map need not be a B-pre-open map.

It needs reference from example 1.1.04.

EXAMPLE 3.2.03. Let \(X = \{a, b, c\} = X^* \), \(\tau = \{\phi, X, \{a\}, \{a, c\}\} = \tau^* \), \(\leq = \{(a, a), (b, b), (c, c), (c, a), (b, c), (b, a)\} = \leq^* \). Let \(f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \) be the identity map. \(\phi \) is the open set in \((X, \tau)\), \(f(\phi) = \phi \) is a pre-open set in \((X^*, \tau^*)\), \(i(\phi) = \phi \). \(X \) is the open set in \((X, \tau)\), \(f(X) = X^* \) is a pre-open set in \((X^*, \tau^*)\), \(i(X^*) = X^* \).

Let \{a\} be an open set in \((X, \tau)\), \(f(\{a\}) = \{a\} \) is a pre-open set in \((X^*, \tau^*)\), \(i(\{a\}) = \{a\} \).

\{a, c\} is an pre-open set in \((X, \tau)\), \(f(\{a, c\}) = \{a, c\} \) is a pre-open set in \((X^*, \tau^*)\), \(i(\{a, c\}) = \{a, c\} \). \Rightarrow
f(G) ∈ IPO(X*), whenever G is an open set in (X, τ). Therefore f is an I-pre-open map.

{a} is an open set in (X, τ), f({a}) = {a}, d({a}) = {a, b, c} ≠ {a}. f([{a}]) ∉ DPO(X*). Therefore f is not a D-pre-open map and hence f is not a B-pre-open map.

Thus an I-pre-open map need not be a B-pre-open map.

3.2.01 The above observations are given in the following diagram.

For a function f:(X, τ, ≤) → (X*, τ*, ≤*),

LEMMA 3.2.01. Let A be any subset of a topological ordered space (X, τ, ≤). Then

1) C(dpcl(A)) = (C(A))_{ipo}.
2) C(ipcl(A)) = (C(A))_{dpo}.
3) \(C(\text{bpcl}(A)) = (C(A))^{\text{ip}}. \)

Proof.

\[
C(\text{dpcl}(A)) = C\{ \cap \mathcal{F}/\mathcal{F} \text{ is a decreasing pre-closed subset of } X \text{ containing } A \}
= \bigcup \{C(F)/\mathcal{F} \text{ is a decreasing pre-closed subset of } X \text{ containing } A \}
= \bigcup \{G/G \text{ is an increasing pre-open subset of } X \text{ contained in } C(A) \}
= (C(A))^{\text{ipo}}.
\]

Proofs of (2) and (3) are parallel to that of (1).

The following theorem characterizes I-pre-open functions.

THEOREM 3.2.01. For any function \(f:(X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \), the following statements are equivalent.

1) \(f \) is an I-pre-open map.

2) \(f(A^0) \subseteq [f(A)]^{\text{ipo}} \) for any \(A \subseteq X \).

3) \([f^{-1}(B)]^0 = f^{-1}(B^{\text{ipo}}) \) for any \(B \subseteq X^* \).

Proof. \((1) \Rightarrow (3)\) Since \([f^{-1}(B)]^0 \) is open in \(X \) and \(f \) is an I-pre-open, \(f((f^{-1}(B))^0) \subseteq f(f^{-1}(B)) \subseteq B \) and
f([f^{-1}(B)]^0) \text{ is I-pre-open in } X^*. \text{Then } f((f^{-1}(B))^0) \subseteq B_{ipo} \text{ since } B_{ipo} \text{ is the largest increasing pre-open set contained in } B. \text{Therefore } [f^{-1}(B)]^0 \subseteq f^{-1}(B_{ipo})

(3) => (2) \quad \text{Replacing } B \text{ by } f(A) \text{ in (3), we have } [f^{-1}(f(A))]^0 \subseteq f^{-1}([f(A)]_{ipo}). \text{Since } A^0 \subseteq [f^{-1}(f(A))]^0, \text{we have } A^0 \subseteq f^{-1}([f(A)]_{ipo}). f(A^0) \subseteq f(f^{-1}([f(A)]_{ipo})) \subseteq [f(A)]_{ipo}. \text{Hence } f(A^0) \subseteq [f(A)]_{ipo}.

(2) => (1) \quad \text{Let } G \text{ be any open set in } X. \text{Then } f(G) = f(G^0) \subseteq [f(G)]_{ipo} \subseteq f(G). \text{Therefore } f(G) \text{ is an increasing pre-open set in } X^* \quad f \text{ is an I-Pre-open map.}

We can obtain the following two theorems regarding D-pre-open map and B-pre-open maps trivially.

THEOREM 3.2.02. For any function \(f: (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \), the following statements are equivalent.

1) \(f \) is D-pre-open map.

2) \(f(A^0) \subseteq [f(A)]^{dpo} \) for any \(A \subseteq X \).
3) \([f^{-1}(B)]^0 \subseteq f^{-1}(B^{bpo})\) for any \(B \subseteq X^*\).

THEOREM 3.2.03. For any function \(f:(X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)\), the following statements are equivalent.

1) \(f\) is \(B\)-pre-open map.

2) \([f(A^0)] \subseteq [f(A)]^{bpo}\) for any \(A \subseteq X\).

3) \([f^{-1}(B)]^0 \subseteq f^{-1}(B^{bpo})\) for any \(B \subseteq X^*\).

THEOREM 3.2.04. Let \(f: (X, \tau, \leq_1) \rightarrow (Y, \sigma, \leq_2)\) and \(g: (Y, \sigma, \leq_2) \rightarrow (Z, \eta, \leq_3)\) be any two mappings. Then \(gof: (X, \tau, \leq_1) \rightarrow (Z, \eta, \leq_3)\) is \(x\)-pre-open if \(f\) is open and \(g\) is \(x\)-pre-open for \(x = I, D, B\).

Proof. Let \(F\) be any open set in \((X, \tau)\). Since \(f\) is open map, \(f(F)\) is open in \((Y, \sigma)\). Given \(g\) is \(x\)-pre-open map, \(g(f(F))\) is \(x\)-pre-open set in \((Z, \eta, \leq_3)\) for \(x = I, D, B\). Hence \(gof\) is \(x\)-pre-open map for \(x = I, D, B\).

3.3 I-\(\alpha\)-OPEN, D-\(\alpha\)-OPEN AND B-\(\alpha\)-OPEN MAPS.

Introduction: We introduce the following for \(\alpha\)-open sets.
\(A^{i\alpha o} = \bigcup \{G/G \text{ is an increasing } \alpha\text{-open subset of } X \text{ contained in } A\} \),
\(A^{d\alpha o} = \bigcup \{G/G \text{ is a decreasing } \alpha\text{-open subset of } X \text{ contained in } A\} \) and
\(A^{b\alpha o} = \bigcup \{G/G \text{ is a balanced } \alpha\text{-open subset of } X \text{ contained in } A\} \).

Clearly \(A^{i\alpha o}(A^{d\alpha o}, A^{b\alpha o}) \) is the largest increasing (decreasing, balanced) \(\alpha\)-open set contained in \(A \).

We introduce the following.

DEFINITION 3.3.01. A function \(f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*) \) is called an I-\(\alpha\)-open map [6] (resp. D-\(\alpha\)-open, B-\(\alpha\)-open map if \(f(G) \in \text{I}^{\alpha O}(X^*) \) (resp. \(f(G) \in \text{D}^{\alpha O}(X^*) \), \(f(G) \in \text{B}^{\alpha O}(X^*) \)) whenever \(G \) is an open subset of \((X, \tau, \leq) \).

It is evident that every \(x\)-\(\alpha\)-open map is an \(\alpha\)-open map for \(x = I, D, B \) and that every B-\(\alpha\)-open map is both I-\(\alpha\)-open and D-\(\alpha\)-open.

Following example shows that an \(\alpha\)-open map need not be \(x\)-\(\alpha\)-open for \(x = I, D, B \).
EXAMPLE 3.3.01. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ, \leq) is a topological ordered space. Let f be the identity map from (X, τ, \leq) onto itself. Since f is the identity map, every open set in (X, τ) is mapped into an open set and hence it is an α-open set in (X^*, τ^*) (\therefore every open set is an α-open set). Hence f is an α-open map.

$\{b\}$ is an open set in (X, τ), $f(\{b\}) = \{b\}$, $i(\{b\}) = \{b, c\} \neq \{b\}$. $\Rightarrow f(\{b\}) \notin I\alpha O(X)$. $\Rightarrow f$ is not an I-α-open map. $d(\{b\}) = \{a, b\} \neq \{b\}$. $\Rightarrow f(\{b\}) \notin D\alpha O(X)$. Therefore f is not a D-α-open map and consequently f is not a B-α-open map.

Thus an α-open map need not be a x-α-open map for $x = I, D, B$.

Following example shows that a D-α-open map need not be a B-α-open map. It needs reference from example 1.1.01.

EXAMPLE 3.3.02. Let $X = \{a, b, c\} = X^*$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*$, $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$
and $\leq^* = \{(a, a), (b, b), (c, c), (a, c), (b, c)\}$. Let f be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*). ϕ is the open set in (X, τ), $f(\phi) = \phi$ is an α-open set in (X^*, τ^*), $d(\phi) = \phi$. X is the open set in (X^*, τ^*), $f(X) = X^*$ is an α-open set in (X^*, τ^*), $d(X^*) = X^*$. \{a\} is an open set in (X, τ), $f(\{a\}) = \{a\}$ is an α-open set in (X^*, τ^*), $d(\{a\}) = \{a\}$. \{b\} is an open set, $f(\{b\}) = \{b\}$ is an α-open set in (X^*, τ^*), $d(\{b\}) = \{b\}$. \{a, b\} be an open set in (X, τ), $f(\{a, b\}) = \{a, b\}$ is an α-open set in (X^*, τ^*), $d(\{a, b\}) = \{a, b\}$. $\Rightarrow f(G) \in D\alpha O(X^*)$, whenever G is an open set in (X, τ). $\Rightarrow f$ is a D-α-open map.

\{a\} is an open set in (X, τ), $f(\{a\}) = \{a\}$, $i(\{a\}) = \{a, c\} \neq \{a\}$. $\Rightarrow f(\{a\}) \notin I\alpha O(X^*)$. Therefore f is not an I-α-open map and hence f is not a B-α-open map.

Thus a D-α-open map need not be a B-α-open map.

Following example shows that an I-α-open map need not be a B-α-open map. It needs reference from example 1.1.04.
EXAMPLE 3.3.03. Let $X = \{a, b, c\} = X^*$, $\tau = \{\varnothing, X, \{a\}, \{a, c\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c), (c, a), (b, c), (b, a)\} = \leq^*$. Let $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be the identity map. \varnothing is the open set in (X, τ), $f(\varnothing) = \varnothing$ is an α-open set in (X^*, τ^*), $i(\varnothing) = \varnothing$. X is the open set in (X, τ), $f(X) = X^*$ is an α-open set in (X^*, τ^*), $i(X^*) = X^*$. $\{a\}$ is an open set in (X, τ), $f(\{a\}) = \{a\}$ is an α-open set in (X^*, τ^*). $i(\{a\}) = \{a\}$. $\{a, c\}$ is an open set in (X, τ), $f(\{a, c\}) = \{a, c\}$ is an α-open set in (X^*, τ^*), $i(\{a, c\}) = \{a, c\}$. $\Rightarrow f(G) \in I_\alpha O(X^*)$, whenever G is an open set in (X, τ). Therefore f is an I-α-open map.

$G = \{a\}$ be an open set in (X, τ), $f(\{a\}) = \{a\}$, $d(\{a\}) = \{a, b, c\} \neq \{a\}$. $\Rightarrow f(\{a\}) \notin D_\alpha O(X^*)$. Therefore f is not a D-α-open map and consequently f is not a B-α-open map.

Thus an I-α-open map need not be a B-α-open map.
3.3.01 The above observations are given in the following diagram.

For a function \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \)

The following theorems are similar to that of pre-open maps.

LEMMA 3.3.01. Let \(A \) be any subset of a topological ordered space \((X, \tau, \leq)\). Then

1) \(C(d_{\alpha}cl(A)) = (C(A))^{i_{\alpha}o} \).

2) \(C(i_{\alpha}cl(A)) = (C(A))^{d_{\alpha}o} \).

3) \(C(b_{\alpha}cl(A)) = (C(A))^{b_{\alpha}o} \).

THEOREM 3.3.01. For any function \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \), the following statements are equivalent.

1) \(f \) is an I-\(\alpha \)-open map.
2) $f(A^0) \subseteq [f(A)]^{\text{dao}}$ for any $A \subseteq X$.

3) $[f^{-1}(B)]^0 = f^{-1}(B^{\text{dao}})$ for any $B \subseteq X^*$.

We obtain the following two theorems that give characterizations for D-α-open map and B-α-open maps trivially.

THEOREM 3.3.02. For any function $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$, the following statements are equivalent.

1) f is a D-α-open map.

2) $f(A^0) \subseteq [f(A)]^{\text{dao}}$ for any $A \subseteq X$.

3) $[f^{-1}(B)]^0 \subseteq f^{-1}(B^{\text{dao}})$ for any $B \subseteq X^*$.

THEOREM 3.3.03. For any function $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$, the following statements are equivalent.

1) f is a B-α-open map.

2) $[f(A^0)] \subseteq [f(A)]^{\text{bao}}$ for any $A \subseteq X$.

3) $[f^{-1}(B)]^0 \subseteq f^{-1}(B^{\text{bao}})$ for any $B \subseteq X^*$.

THEOREM 3.3.04. Let $f : (X, \tau, \leq_1) \to (Y, \sigma, \leq_2)$ and $g : (Y, \sigma, \leq_2) \to (Z, \eta, \leq_3)$ be any two mappings. Then $gof : (X, \tau, \leq_1) \to (Z, \eta, \leq_3)$ is x-α-open if f is open and g is x-α-open for $x = I, D, B$.
Proof. Let G be an open set in X. Since f is an open map, $f(G)$ is an open set in (Y, σ). Since g is a x-α-open map, $g(f(G))$ is a x-α-open set in (Z, η), for $x=I,D,B$. \Rightarrow $gof(G)$ is a x-α-open set in (Z,η). Therefore gof is a x-α-open map for $x=I,D,B$.

THEOREM 3.3.05 : Let (X, τ, \leq) and $(X^{*}, \tau^{*}, \leq^{*})$ be two topological ordered spaces.

Let $f : (X, \tau, \leq) \rightarrow (X^{*}, \tau^{*}, \leq^{*})$ be a map. If f is an I-α-open map then it is an I-semi-open map and an I-pre-open map.

Proof. Let f be an I-α-open map. Let G be an open set in X. Since f is an I-α-open map, $f(G)$ is an I-α-open set in X^{*}. \Rightarrow $f(G)$ is an I-semi-open set in X^{*} and an I-pre-open set in X^{*} (from Lemma 1.1.1). Therefore f is an I-α-open map and f is an I-pre-open map.

Following example shows that an I-semi-open map need not be an I-α-open map. It needs reference from example 1.1.01.
EXAMPLE 3.3.04. Let $X = \{a, b, c\} = X^*$, $\tau = \{\emptyset, X, \{a\}\}$, $\tau^* = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (c, b)\} = \leq^*$ Define $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ by $f(a) = b$, $f(b) = c$ and $f(c) = c$. \emptyset is the open set in (X, τ), $f(\emptyset) = \emptyset$ is a semi-open set (X^*, τ^*), $i(\emptyset) = \emptyset$. X is the open set in (X, τ), $f(X) = \{b, c\}$ is a semi-open set in (X^*, τ^*), $i(\{b, c\}) = \{b, c\}$. $\{a\}$ is an open set in (X, τ), $f(\{a\}) = \{b\}$ is a semi-open set in (X^*, τ^*), $i(\{b\}) = \{b\}$. $\Rightarrow f(G) \in \text{ISO}(X^*)$, where G is an open set in $(X, \tau) \Rightarrow f$ is an I-semi-open map.

X is an open set in (X, τ), $f(X) = \{b, c\}$ is not an α-open set in (X^*, τ^*). Therefore $f(X) \notin \text{I} \alpha \text{O}(X^*)$ and consequently f is not an I-α-open map.

Thus an I-semi-open map need not be an I-α-open map.

Following example shows that an I-pre-open map need not be an I-α-open map. It needs reference from example 1.1.03.
EXAMPLE 3.3.05. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b, c\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Let f be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*). ϕ is the open set in (X, τ), $f(\phi) = \phi$ is a pre-open set in (X^*, τ^*), $i(\phi) = \phi$. X is the open set in (X, τ), $f(X) = X^*$ is a pre-open set in (X^*, τ^*), $i(X^*) = X^*$. $\{a\}$ is an open set in (X, τ), $f(\{a\}) = \{a\}$ is a pre-open set in (X^*, τ^*), $i(\{a\}) = \{a\}$. $\{b\}$ is an open set in (X, τ), $f(\{b\}) = \{b\}$ is a pre-open set in (X^*, τ^*), $i(\{b\}) = \{b\}$. $\{a, b\}$ is an open set in (X, τ), $f(\{a, b\}) = \{a, b\}$ is a pre-open set, $i(\{a, b\}) = \{a, b\}$. \(\Rightarrow f(G) \in IPO(X^*)\), where G is an open set in (X, τ). \(\Rightarrow f\) is an I-pre-open map.

$\{b\}$ is an open set in (X, τ), $f(\{b\}) = \{b\}$ is not an α-open set. Therefore f is not an α-open map and consequently f is not an I-α-open map.

Thus an I-pre-open map need not be an I-α-open map.

THEOREM 3.3.06. Let (X, τ, \leq) and (X^*, τ^*, \leq^*) be two topological ordered spaces.
Let \(f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*) \) be a map. If \(f \) is a D-\(\alpha \)-open map then it is a D-semi-open map and a D-pre-open map.

Proof. Let \(f \) be a D-\(\alpha \)-open map. Let \(G \) be an open set in \(X \). Since \(f \) is a D-\(\alpha \)-open map, \(f(G) \) is a D-\(\alpha \)-open set in \(X^* \). \(\Rightarrow \) \(f(G) \) is a D-semi-open set in \(X^* \) and a D-pre-open set in \(X^* \) (from Lemma 1.1.1). Therefore \(f \) is a D-\(\alpha \)-open map and \(f \) is a D-pre-open map.

Following example shows that a D-semi-open map need not be a D-\(\alpha \)-open map. It needs reference from example 1.1.01.

EXAMPLE 3.3.06. Let \(X = \{a, b, c\} = X^*, \tau = \{\emptyset, X, \{a\}\}, \tau^* = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \) and \(\leq = \{(a, a), (b, b), (c, c), (b, c), (c, a), (b, a)\} = \leq^* \).

Define \(f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*) \) by \(f(a) = b, f(b) = c \) and \(f(c) = c \). \(\emptyset \) is the open set in \((X, \tau) \), \(f(\emptyset) = \emptyset \) is a semi-open set in \((X^*, \tau^*) \), \(d(\emptyset) = \emptyset \). \(X \) is the open set in \((X, \tau) \), \(f(X) = \{b, c\} \) is a semi-open set in \((X^*, \tau^*) \), \(d(\{b, c\}) = \{b, c\} \). \(\{a\} \) is an open set in \((X, \tau) \), \(f(\{a\}) \)
= {b} is a semi-open set in (X^*, τ^*), $d([b]) = \{b\}$. =>
$f(G) \in DSO(X^*)$, where G is an open set in (X, τ). Therefore f is an D-semi-open map.

X is the open set in (X, τ), $f(X) = \{b, c\}$ is not an α-open set in (X^*, τ^*). Therefore $f(X) \notin D\alpha O(X^*)$ and consequently f is not a D-α-open map.

Thus a D-semi-open map need not be a D-α-open map.

Following example shows that a D-pre-open map need not be a D-α-open map. It needs reference from example 1.1.03.

EXAMPLE 3.3.07. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Let f be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*). ϕ is the open set in (X, τ), $f(\phi) = \phi$ is a pre-open set in (X^*, τ^*), $d(\phi) = \phi$. X is the open set in (X, τ), $f(X) = X^*$ is a pre-open set in (X^*, τ^*), $d(X^*) = X^*$. $\{a\}$ is an open set in (X, τ), $f(\{a\}) = \{a\}$ is a pre-open set in (X^*, τ^*), $d(\{a\}) = \{a\}$. $\{b\}$ is an
open set in \((X, \tau)\), \(f(\{b\}) = \{b\}\) is a pre-open set in \((X^*, \tau^*)\), \(d(\{b\}) = \{b\}\). \(\{a, b\}\) is an open set in \((X, \tau)\), \(f(\{a, b\}) = \{a, b\}\) is a pre-open set, \(d(\{a, b\}) = \{a, b\}\).

\[\Rightarrow f(G) \in \text{DPO}(X^*), \] where \(G\) is an open set in \((X, \tau)\).

\[\Rightarrow f\] is a D-pre-open map.

\(\{b\}\) is an open set in \((X, \tau)\), \(f(G) = f(\{b\}) = \{b\}\) is not an \(\alpha\)-open set. Therefore \(f\) is not an \(\alpha\)-open map and consequently \(f\) is not a D-\(\alpha\)-open map.

Thus a D-pre-open map need not be a D-\(\alpha\)-open map.

Theorem 3.3.07. Let \((X, \tau, \leq)\) and \((X^*, \tau^*, \leq^*)\) be two topological ordered spaces.

Let \(f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)\) be a map. If \(f\) is a B-\(\alpha\)-open map then it is a B-semi-open map and a B-pre-open map.

Proof. Let \(f\) be a B-\(\alpha\)-open map. Let \(G\) be an open set in \(X\). since \(f\) is a B-\(\alpha\)-open map, \(f(G)\) is a B-\(\alpha\)-open set in \(X^*\). \(\Rightarrow f(G)\) is a B-semi-open set in \(X^*\) and a B-pre-open set in \(X^*\) (from Lemma 1.1.1).
Therefore f is a B-α-open map and f is a B-pre-open map.

Following example shows that a B-semi-open map need not be a B-α-open map. It needs reference from example 1.1.01.

EXAMPLE 3.3.08. Let $X = \{a, b, c\} = X^*, \tau = \{\phi, X, \{a, b\}\}$, $\tau^* = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and

$\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ by $f(a) = b$, $f(b) = c$ and $f(c) = a$. ϕ is the open set in (X, τ), $f(\phi) = \phi$ is a semi-open set in (X^*, τ^*), $i(\phi) = \phi$, $d(\phi) = \phi$. X is the open set in (X, τ), $f(X) = X^*$ is a semi-open set in (X^*, τ^*), $i(X^*) = X^*$, $D(X^*) = X^*$. $\{a, b\}$ is an open set in (X, τ), $f(\{a, b\}) = \{b, c\}$ is a semi-open set in (X^*, τ^*), $i(\{b, c\}) = \{b, c\}$, $d(\{b, c\}) = \{b, c\}$.$\Rightarrow f(G) \in \text{BSO}(X^*)$, whenever G is any open set in (X, τ). Therefore f is a B-semi-open map.

$\{a, b\}$ is an open set in (X, τ), $f(\{a, b\}) = \{b, c\}$ is not an α-open set in (X^*, τ^*). $\Rightarrow f(G) \notin \text{B}\alpha\text{O}(X^*)$.
Therefore f is not an α-open map and hence f is not a B-α-open map.

Thus a B-semi-open map need not be a B-α-open map.

Following example shows that a B-pre-open map need not be a B-α-open map. It needs reference from example 1.1.03.

EXAMPLE 3.3.09. Let $X = \{a, b, c\} = X^*, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \tau^* = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Let f be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*). From example 3.3.07 f is a D-pre-open map. $i(\emptyset) = \emptyset, i(\{a\}) = \{a\}, i(\{b\}) = \{b\}, i(\{a, b\}) = \{a, b\}$. $\Rightarrow f(G) \in IPO(X^*)$, whenever G is an open set in (X, τ). $\Rightarrow f(G) \in BPO(X^*)$, whenever G is open set in (X, τ). Therefore f is a B-pre-open map.

$\{b\}$ is an open set in (X, τ). $f(\{b\}) = \{b\}$ is not an α-open set in (X^*, τ^*). Therefore f is not an α-open map and consequently f is not a B-α-open map.

Thus a B-pre-open map need not be a B-α-open map.
3.4 I-β-OPEN, D-β-OPEN AND B-β-OPEN MAPS.

Introduction: We define the following for β-open sets.

\[A^{iβo} = \bigcup \{G / G \text{ is an increasing } β\text{-open subset of } X \text{ contained in } A\}, \]

\[A^{dβo} = \bigcup \{ G / G \text{ is a decreasing } β\text{-open subset of } X \text{ contained in } A\} \text{ and} \]

\[A^{bβo} = \bigcup \{ G / G \text{ is a balanced } β\text{-open subset of } X \text{ contained in } A\}. \]

Clearly \(A^{iβo}\) (resp. \(A^{dβo}, A^{bβo}\)) is the largest increasing (resp. decreasing, balanced) β-open contained in A.

We introduce the following.

DEFINITION 3.4.01. A function \(f : (X, τ, ≤) \rightarrow (X^*, τ^*, ≤^*) \) is called an I-β-open map \([7]\) (resp. D-β-open map, B-β-open map) if \(f(G) \in IβO(X^*) \) (resp. \(f(G) \in DβO(X^*), f(G) \in BβO(X^*) \)) whenever \(G \) is an open subset of \((X, τ)\).
It is evident that every x-β-open map is an β-open map for $x= I,D,B$ and that every B-β-open map is both I-β-open and D-β-open.

Following example shows that a β-open map need not be a x-β-open map for $x= I,D,B$.

EXAMPLE 3.4.01. Let $X =\{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}$ and $\leq =\{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly (X, τ, \leq) is a topological ordered space. Let f be the identity map from (X, τ, \leq) onto itself. Since f is the identity map, every open set in X is mapped onto an open set and hence it is a β-open set in X^* (Since every open set is a β-open set). Therefore f is a β-open map.

$\{b\}$ is an open set in (X, τ), $f(\{b\}) = \{b\}$, $i(\{b\}) = \{b, c\} \neq \{b\}$. \implies f(\{b\}) \notin I\alpha O(X^*). \implies f$ is not an I-β-open map. $d(\{b\}) =\{a, b\} \neq \{b\}$. \implies f(\{b\}) \notin I\alpha O(X^*) \implies f$ is not an I-β-open map. $d(\{b\}) = \{a, b\} \neq \{b\}$. \implies f(\{b\}) \notin D\alpha O(X). Therefore f is not a D-β-open map and consequently f is not a B-β-open map.
Thus a β-open map need not be a x-β-open map for $x = I, D, B$.

The following example shows that a D-β-open map need not be a B-β-open map.

EXAMPLE 3.4.02. Let $X = \{a, b, c\} = X^*$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} = \tau^*$, $\leq = \{(a, a), (b, b), (c, c), (a, c)\}$ and $\leq^* = \{(a, a), (b, b), (c, c), (a, c), (b, c)\}$. Let f be the identity map from (X, τ, \leq) onto (X^*, τ^*, \leq^*). Since f is the identity map, every open set in (X, τ) is mapped onto an open set in (X^*, τ^*) and hence it is a β-open set in (X^*, τ^*) (Since every open set is a β-open set). Therefore f is a β-continuous map. We have $d(\emptyset) = \emptyset$, $d(X) = X$, $d(\{a\}) = \{a\}$, $d(\{b\}) = \{b\}$, $d(\{a, b\}) = \{a, b\}$. $\Rightarrow f(G) \in D\beta O(X^*)$, for every open set G in (X, τ). $\Rightarrow f$ is a D-β-open map.

$\{a\}$ is an open set, $f(\{a\}) = \{a\}$. $i(\{a\}) = \{a, c\} \neq \{a\}$. $\Rightarrow f(\{a\}) \notin I\beta O(X^*)$. $\Rightarrow f$ is not an I-β-open map and hence f is not a B-β-open map.

Thus a D-β-open map need not be a B-β-open map.
EXAMPLE 3.4.03. Let \(X = \{a, b, c\} = X^*, \tau = \{\emptyset, X, \{a\}, \{a, c\}\} = \tau^* \) and \(\leq = \{(a, a), (b, b), (c, c), (c, a), (b, c), (b, a)\} = \leq^* \). Let \(f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*) \) be the identity map. Since \(f \) is the identity map, every open set in \((X, \tau)\) is mapped onto an open set in \((X^*, \tau^*)\) and hence it is a \(\beta \)-open set in \((X^*, \tau^*)\) (Since every open set is a \(\beta \)-open set). Therefore \(f \) is a \(\beta \)-continuous map. We have \(i(\emptyset) = \emptyset, i(X^*) = X^*, i(\{a\}) = \{a\}, i(\{a, c\}) = \{a, c\} \). \(\Rightarrow \) \(f(G) \in I\beta O(X^*) \), for every open set \(G \) in \((X, \tau)\). \(\Rightarrow \) \(f \) is an \(I-\beta \)-open map.

\(\{a\} \) is an open set in \((X, \tau)\), \(f(\{a\}) = \{a\}, d(\{a\}) = \{a, b, c\} \neq \{a\} \) is not a \(D-\beta \)-open set in \((X^*, \tau^*)\). \(\Rightarrow \) \(f(\{a\}) \notin D\beta O(X^*) \). \(\Rightarrow \) \(f \) is not a \(D-\beta \)-open map and hence \(f \) is not a \(B-\beta \)-open map.

Thus an \(I-\beta \)-open map need not be a \(B-\beta \)-open map.
3.4.01 The above observations are given in the following diagram.

For a function \(f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*) \)

![Diagram showing relationships between open, \(d\beta\)-open, \(i\beta\)-open, \(b\beta\)-open, and \(\beta\)-open functions.]

Following results are trivially obtained parallel to that of pre-open maps.

LEMMA 3.4.01. Let \(A \) be any subset of a topological ordered space \((X, \tau, \leq)\). Then

1) \(C(d\beta cl(A)) = (C(A))^{i\beta_0} \).
2) \(C(i\beta cl(A)) = (C(A))^{d\beta_0} \).
3) \(C(b\beta cl(A)) = (C(A))^{b\beta_0} \).

Following theorem characterizes \(I\)-\(\beta\)-open functions.
THEOREM 3.4.01. For any function \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \), the following statements are equivalent.

1) \(f \) is an I-\(\beta \)-open map.

2) \(f(A^0) \subseteq [f(A)]^{i\beta_0} \) for any \(A \subseteq X \).

3) \([f^{-1}(B)]^0 = f^{-1}(B^{i\beta_0}) \) for any \(B \subseteq X^* \).

We can obtain the following two theorems that give characterizations for D-\(\beta \)-open map and B-\(\beta \)-open maps trivially.

THEOREM 3.4.02. For any function \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \), the following statements are equivalent.

1) \(f \) is D-\(\beta \)-open map.

2) \(f(A^0) \subseteq [f(A)]^{d\beta_0} \) for any \(A \subseteq X \).

3) \([f^{-1}(B)]^0 \subseteq f^{-1}(B^{d\beta_0}) \) for any \(B \subseteq X^* \).

THEOREM 3.4.03. For any function \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \), the following statements are equivalent.

1) \(f \) is B-\(\beta \)-open map.

2) \([f(A^0)] \subseteq [f(A)]^{b\beta_0} \) for any \(A \subseteq X \).

3) \([f^{-1}(B)]^0 \subseteq f^{-1}(B^{b\beta_0}) \) for any \(B \subseteq X^* \).
THEOREM 3.4.04. Let $f : (X, \tau, \leq_1) \rightarrow (Y, \sigma, \leq_2)$ and $g : (Y, \sigma, \leq_2) \rightarrow (Z, \eta, \leq_3)$ be any two mappings. Then $gof : (X, \tau, \leq_1) \rightarrow (Z, \eta, \leq_3)$ is x-β-open if f is open and g is x-β-open for $x = I, D, B.$

THEOREM 3.4.05. Every I-semi-open map is an I-β-open map.

Proof. Let $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ be an I-semi-open map. Let G be an open set in $X.$

$f(G)$ is an I-semi-open set in $X^*.$ $=>$ $C(f(G))$ is a D-semi-closed set in $X^*.$ $=> C(f(G))$ is a D-β-closed set in $X^*\, (\text{from Lemma 1.1.2}).$ $=>$ $f(G)$ is I-β-open set in $X^*.$ Therefore f is I-β-open map.

Following example shows that an I-β-open map need not be an I-semi-open map. It needs reference from example 1.1.03.

EXAMPLE 3.4.04. Let $X = \{a, b, c\} = X^*, \tau = \{\phi, X, \{a\}, \{b, c\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*.$ Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by $f(a) = b,$ $f(b) = c$ and $f(c) = a.$ ϕ is the open set in $(X, \tau),$ $f(\phi) = \phi$ is a β-open set in $(X^*, \tau^*),$ $i(\phi) = \phi.$ X is the open
set in \((X, \tau), f(X) = X^*\) is a \(\beta\)-open set in \((X^*, \tau^*)\), \(i(X^*) = X^*\). \(\{a\}\) is an open set in \((X, \tau)\),
f(\{a\}) = \{b\} is a \(\beta\)-open set in \((X^*, \tau^*)\), \(i(\{b\}) = \{b\}\). \(\{b, c\}\) is an open set in \((X, \tau)\),
f(\{b, c\}) = \{c, a\} is a \(\beta\)-open set in \((X^*, \tau^*)\), \(i(\{a, c\}) = \{a, c\}\). \(\Rightarrow f(G) \in \mathbb{I}\beta O(X^*)\), for every open set \(G\) in \((X, \tau)\). \(\Rightarrow f\) is an \(I, \beta\)-open map.

\(\{a\}\) is an open set in \((X, \tau)\), \(f(\{a\}) = \{b\}\) is not a semi-open set in \((X^*, \tau^*)\). Therefore \(f\) is not a semi-open map and consequently \(f\) is not an \(I,\)semi-open map.

Thus an \(I,\)\(\beta\)-open map need not be an \(I,\)semi-open map

THEOREM 3.4.06. Every \(I\)-pre-open map is an \(I,\)\(\beta\)-open map.

Proof. Let \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)\) be an \(I\)-pre-open map. Let \(G\) be an open set in \(X\). \(\Rightarrow f(G)\) is an \(I\)-pre-open set in \(X^*\). \(\Rightarrow C(f(G))\) is a \(D\)-pre-closed set in \(X^*\). \(\Rightarrow C(f(G))\) is a \(D,\)\(\beta\)-closed set in \(X^*\) (from Lemma 1.1.3). \(\Rightarrow f(G)\) is \(I, \beta\)-open set in \(X^*\). Therefore \(f\) is an \(I,\)\(\beta\)-open map.
Following example shows that an I-\(\beta\)-open map need not be an I-pre-open map. It needs reference from example 1.1.01.

EXAMPLE 3.4.05. Let \(X = \{a, b, c\} = X^*, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}, \tau^* = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \) and \(\leq = \{(a, a), (b, b), (c, c)\} = \leq^*\). Define a map \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)\) by \(f(a) = b, \ f(b) = c\) and \(f(c) = a\). \(\emptyset\) is the open set in \((X, \tau)\), \(f(\emptyset) = \emptyset\) is a \(\beta\)-open set in \((X^*, \tau^*)\), \(i(\emptyset) = \emptyset\). \(X\) is the open set in \((X, \tau)\), \(f(X) = X^*\) is a \(\beta\)-open map in \((X^*, \tau^*)\). \(i(X^*) = X^*\). \(\{a\}\) is an open set in \((X, \tau)\), \(f(\{a\}) = \{b\}\) is a \(\beta\)-open set in \((X^*, \tau^*)\), \(i(\{b\}) = \{b\}\). \(\{b, c\}\) is an open set in \((X, \tau)\), \(f(\{b, c\}) = \{a, c\}\) is a \(\beta\)-open set in \((X^*, \tau^*)\), \(i(\{a, c\} = \{a, c\}, \Rightarrow f(\{a, c\}) \in I\beta O(X^*), \) for every open set \(G\) in \((X, \tau)\). \(\Rightarrow f\) is an I-\(\beta\)-open map.

\(\{b, c\}\) is an open set in \((X, \tau)\), \(f(\{b, c\}) = \{a, c\}\) is not a pre-open set in \((X^*, \tau^*)\). Therefore \(f\) is not a pre-open map and consequently \(f\) is not an I-pre-open map.
Thus an I-β-open map need not be a I-pre-open map.

Theorem 3.4.07. Every I-α-open map is an I-β-open map.

Proof. Let \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \) be an I-α-open map. Let \(G \) be an open set in \(X \). \(\Rightarrow \) \(f(G) \) is an I-α-open set in \(X^* \). \(\Rightarrow \) \(C(f(G)) \) is a D-α-closed set in \(X^* \).

\(\Rightarrow \) \(C(f(G)) \) is a D-β-closed set in \(X^* \) (from Lemma 1.1.4). \(\Rightarrow \) \(f(G) \) is an I-β-open set in \(X^* \). Therefore \(f \) is an I-β-open map.

Following example shows that an I-β-open map need not be an I-α-open map. It needs reference from example 1.1.03.

Example 3.4.06. Let \(X = \{a, b, c\} = X^* \), \(\tau = \{\phi, X, \{a\}, \{b, c\}\} = \tau^* \) and \(\leq = \{(a, a), (b, b), (c, c)\} = \leq^* \).
Define a map \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \) by \(f(a) = b \), \(f(b) = c \) and \(f(c) = a \). \(\phi \) is the open set in \((X, \tau) \), \(f(\phi) = \phi \) is a β-open set in \((X^*, \tau^*) \), \(i(\phi) = \phi \). \(X \) is the open set in \((X, \tau) \), \(f(X) = X^* \) is a β-open set in \((X^*, \tau^*) \), \(i(X^*) = X^* \). \(\{a\} \) is an open set in \((X, \tau) \), \(f(\{a\}) = \{b\} \) is a β-
open set in \((X^*, \tau^*)\), \(i(\{b\}) = \{b\}\). \(\{b, c\}\) is an open set in \((X, \tau)\), \(f(\{b, c\}) = \{a, c\}\) is a \(\beta\)-open set in \((X^*, \tau^*)\), \(i(\{a, c\}) = \{a, c\}\). \(\Rightarrow\) \(f(G) \in I\beta O(X^*)\), for every open set \(G\) in \((X, \tau)\). \(\Rightarrow\) \(f\) is an I-\(\beta\)-open map.

\(\{a\}\) is an open set in \((X, \tau)\), \(f(\{a\}) = \{b\}\) is not an \(\alpha\)-open set in \((X^*, \tau^*)\). \(\Rightarrow\) \(f(\{a\}) \notin I\alpha O(X^*)\). Therefore \(f\) is not an \(\alpha\)-open map and consequently \(f\) is not an I-\(\alpha\)-open map.

Thus an I-\(\beta\)-open map need not be an I-\(\alpha\)-open map.

THEOREM 3.4.08. Every \(D\)-semi-open map is a \(D\)-\(\beta\)-open map.

Proof. Let \(f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)\) be an \(D\)-semi-open map. Let \(G\) be an open set in \(X\). \(\Rightarrow\) \(f(G)\) is a \(D\)-semi-open set in \(X^*\). \(\Rightarrow\) \(C(f(G))\) is an I-semi-closed set in \(X^*\). \(\Rightarrow\) \(C(f(G))\) is an I-\(\beta\)-closed set in \(X^*\) (from Lemma 1.1.2). \(\Rightarrow\) \(f(G)\) is a \(D\)-\(\beta\)-open set in \(X^*\). Therefore \(f\) is a \(D\)-\(\beta\)-open map.
Following example shows that a D-β-open map need not be a D-semi-open map. It needs reference from example 1.1.03.

EXAMPLE 3.4.07. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b, c\}\} = \tau^*$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ by $f(a) = b$, $f(b) = c$ and $f(c) = a$. From example 3.4.04 f is a β-open map. We have $d(\phi) = \phi$, $d(X^*) = X^*$, $d(\{b\}) = \{b\}$, $d(\{a, c\}) = \{a, c\}$. $\Rightarrow f(G) \in D\beta O(X^*)$, for any open set G in (X, τ). $\Rightarrow f$ is a D-β-open map.

$\{a\}$ is an open set in (X, τ), $f(\{a\}) = \{b\}$ is not a semi-open set in (X^*, τ^*). $\Rightarrow f(\{a\}) \notin DSO(X^*). \Rightarrow f$ is not a semi-open map and hence f is not a D-semi-open map.

Thus a D-β-open map need not be a D-semi-open map.

THEOREM 3.4.09. Every D-pre-open map is a D-β-open map.

Proof. Let $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be an D-pre-open map. Let G be an open set in X. $\Rightarrow f(G)$ is a D-
pre-open set in X^*. $\Rightarrow C(f(G))$ is an I-pre-closed set in X^*. $\Rightarrow C(f(G))$ is an I- β-closed set in X^* (from Lemma 1.1.3). $\Rightarrow f(G)$ is a D- β-open set in X^*. Therefore f is a D- β-open map.

Following example shows that a D- β-open map need not be a D-pre-open map. It needs reference from example 1.1.01.

EXAMPLE 3.4.08. Let $X=\{a, b, c\}=X^*$, $\tau=\{\emptyset, X, \{a\}, \{b, c\}\}$, $\tau^*=\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*)$ by $f(a) = b$, $f(b) = c$ and $f(c) = a$. From example 3.4.05 f is a β-open map. We have $d(\emptyset) = \emptyset$, $d(X^*) = X^*$, $d(\{b\}) = \{b\}$, $d(\{a, c\}) = \{a, c\}$. $\Rightarrow f(G) \in D\beta O(X^*)$, for every open set G in (X, τ). Therefore f is a D- β-open map.

$\{b, c\}$ is an open set in (X, τ), $f(\{b, c\}) = \{a, c\}$ is not a pre-open set in (X^*, τ^*). Therefore f is not a pre-open map and consequently f is not a D-pre-open map.
Thus a D-β-open map need not be a D-pre-open map.

THEOREM 3.4.10. Every D-α-open map is a D-β-open map.

Proof. Let $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a D-α-open map. Let G be an open set in X. $f(G)$ is a D-α-open set in X^*. $C(f(G))$ is an I-α-closed set in X^*. $C(f(G))$ is an I-β-closed set in X^* (from Lemma 1.1.4). Therefore f is a D-β-open map.

Following example shows that a D-β-open map need not be a D-α-open map. It needs reference from example 1.1.03.

EXAMPLE 3.4.09. Let $X = \{a, b, c\} = X^*$, $\tau = \{\phi, X, \{a\}, \{b, c\}\}$, $\tau^* = \{(a, a), (b, b), (c, c)\}$, $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ by $f(a) = b$, $f(b) = c$ and $f(c) = a$. From example 3.4.06 f is a β-open map. We have $d(\phi) = \phi$, $d(X^*) = X^*$, $d(\{b\}) = \{b\}$.
\{b\}, d(\{a, c\}) = \{a, c\} f(G) \in D\beta O(X^*) for every open set G in (X, \tau). \Rightarrow f is a D-\beta-open map.

\{a\} is an open set, f(G) = f(\{a\}) = \{b\} is not an \alpha-open set in (X^*, \tau^*). Therefore f is not an \alpha-open map and consequently f is not a D-\alpha-open map.

Thus a D-\beta-open map need not be a D-\alpha-open map.

THEOREM 3.4.11. Every B-semi-open map is a B-\beta-open map.

Proof. Let f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) be a B-semi-open map. \Rightarrow f is I-semi-open map and \ D-semi-open map. Since f is I-semi-open map by theorem 3.4.05 f is I-\beta-open map. Since f is D-semi-open map by theorem 3.4.08 f is D-\beta-open map. Therefore f is \ B-\beta-open map.

Following example shows that a B-\beta-open map need not be a B-semi-open map. It needs reference from example 1.1.03.

EXAMPLE 3.4.10. Let X = \{a, b, c\} = X^*, \tau = \{\phi, X, \{a\}, \{b, c\}\} = \tau^* and \leq = \{(a, a), (b, b),
Define a map \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \) by \(f(a) = b, f(b) = c \) and \(f(c) = a \). From example 3.4.04 \(f \) is an I-\(\beta \)-open map and from example 3.4.07 \(f \) is a D-\(\beta \)-open map. \(\Rightarrow \) \(f \) is a B-\(\beta \)-open map.

\{a\} is an open set in \((X, \tau)\), \(f(\{a\}) = \{b\} \) is not a semi-open set in \((X^*, \tau^*)\). Therefore \(f \) is not a semi-open map and consequently \(f \) is not a B-semi-open map.

Thus a B-\(\beta \)-open map need not be a B-semi-open map.

THEOREM 3.4.12. Every B-pre-open map is a B-\(\beta \)-open map.

Proof. Let \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \) be a B-pre-open map. \(\Rightarrow \) \(f \) is I-pre-open map and D-pre-open map. Since \(f \) is an I-pre-open map by theorem 3.4.06 \(f \) is I-\(\beta \)-open map. Since \(f \) is D-pre-open map by theorem 3.4.09 \(f \) is D-\(\beta \)-open map. Therefore \(f \) is B-\(\beta \)-open map.
Following example shows that a $\text{B-}\beta$-open map need not be a B-pre-opening map. It needs reference from example 1.1.01.

EXAMPLE 3.4.11. Let $X = \{a, b, c\} = X^*$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$, $\tau^* = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\leq = \{(a, a), (b, b), (c, c)\} = \leq^*$. Define a map $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ by $f(a) = b$, $f(b) = c$ and $f(c) = a$. From example 3.4.05 f is an I-β-open map and from example 3.4.08 f is a D-β-open map. $\Rightarrow f$ is a B-β-open map.

$\{b, c\}$ is an open set in (X, τ), $f(\{b, c\} = \{a, c\}$ is not a pre-open set in (X^*, τ^*). Therefore f is not a pre-open map and consequently f is not a β-pre-open map.

Thus a B-β-open map need not be a B-pre-open map.

THEOREM 3.4.13. Every $\text{B-}\alpha$-open map is a $\text{B-}\beta$-open map.

Proof. Let $f : (X, \tau, \leq) \to (X^*, \tau^*, \leq^*)$ be a $\text{B-}\alpha$-open map. $\Rightarrow f$ is an I-α-open map and a
D-α-open map. Since \(f \) is an I-α-open map by theorem 3.4.07 \(f \) is an I-β-open map. Since \(f \) is a D-α-open map by theorem 3.4.10 \(f \) is a D-β-open map. Therefore \(f \) is a B-β-open map.

Following example shows that a B-β-open map need not be a B-α-open map. It needs reference from example 1.1.03.

EXAMPLE 3.4.12. Let \(X = \{a, b, c\} = X^* \), \(\tau = \{\phi, X, \{a\}, \{b, c\}\} = \tau^* \) and \(\leq = \{(a, a), (b, b), (c, c)\} = \leq^* \). Define a map \(f : (X, \tau, \leq) \rightarrow (X^*, \tau^*, \leq^*) \) by \(f(a) = b \), \(f(b) = c \) and \(f(c) = a \). From example 3.4.06 \(f \) is an I-β-open map and from example 3.4.09 \(f \) is a D-β-open map. \(\Rightarrow f \) is a B-β-open map.

\{a\} is an open set in \((X, \tau) \), \(f(\{a\}) = \{b\} \) is not an α-open set in \((X^*, \tau^*) \). Therefore \(f \) is not an α-open map and consequently \(f \) is not a B-α-open map.

Thus a B-β-open map need not be a B-α-open map.