FIGURE – 3

\[\frac{10^{-1.3}}{K'} \text{ vs. } \left[\text{n-propylamine} \right] \]

Graphs (A), (B), (C), and (D)

- (A): \(n = 0.5 \)
- (B)
- (C)
- (D)

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \rightarrow 2 + \log \left[\text{n-propylamine} \right] \]
FIGURE – 5

\[S + \log k'(A, B) \]

\[2 + \log [\text{DEA}] (A) \]

\[2 + \log [\text{TEA}] (B) \]

\[10^{\frac{D-1}{(2D+1)}} \rightarrow 47.1 \quad 47.5 \quad 47.9 \quad 48.3 \quad 48.7 \quad 49.1 \ (D) \]

\[15.0 \quad 20.0 \quad 25.0 \quad 30.0 \quad 35.0 \quad 40.0 \rightarrow \frac{10^3}{D} (C) \]
FIGURE 6

Graph showing the relationship between $3 + \log K(B)$ and $3 + \log K(A)$ against $10^3 \left(\frac{A}{B+C} \right)$, with data points labeled (A), (B), and (C).
FIGURE – 7

The graph shows the relationship between $3 + \log k'(B)$ and $4 + \log k'(A)$ on the y-axis, and $10^3 (A, B)$ versus $\frac{1}{T}$ on the x-axis. The data points are plotted for curves (A), (B), and (C), with specific markers indicating the values for each. The x-axis values range from -0.14 to 0.00, and the y-axis values range from 0.13 to 0.00.
FIGURE – 15

[Graph depicting relationships between various logarithmic values and temperatures, with different markers and lines indicating different data sets labeled A, B, C, D, and E.]
FIGURE - 16

\[
S + \log k' (B) \quad \text{vs} \quad \log (\alpha/\alpha - x) (A)
\]

\[
n = 0.32
\]

\[
1 + \log \text{[lactic acid]} (B)
\]
FIGURE - 19

\[\frac{10^{-4}}{K} (s)_{(A, B \& C)} \]

\[n = 0.65 \]

\[(A) \]

\[(B) \]

\[(C) \]

\[1 + \log [\text{glycolic acid}] (D) \rightarrow \]

\[[\text{glycolic acid}] (A, B \& C) \rightarrow \]
FIGURE – 23

\[4 + \log k' (B) \]

\[\log (a/a-x) (A) \]

(A)

(B)

\[n = 0.4 \]

\[2 + \log [\text{benzyl alcohol}] (B) \]

0.0 0.2 0.4 0.6 ➔

0 10 20 30 40 50 ➔ (min) (A)
FIGURE – 24

Graph showing the relationship between $\frac{1}{[\text{benzyl alcohol}]}$ and $10^{-3}(s)$ for samples A, B, and C.
\[3 + \log \left(\frac{[4\text{-methoxy benzyl alcohol}]}{(A,B&C)} \right) \]
FIGURE – 27

\[\log_{10} \left(\frac{s}{(A,B,C)} \right) \]

\(n = 0.53 \)

\(\log_{10} \left(\frac{1}{(A,B,C)} \right) \rightarrow [4\text{-nitro benzyl alcohol}] \)

\(0.7 \quad 0.9 \quad 1.1 \quad 1.3 \rightarrow 3 + \log [4\text{-nitro benzyl alcohol}] \)
FIGURE - 30

\[\Delta H^\# (J mol^{-1}) \]

\[\Delta S (J k^{-1} mol^{-1}) \]
FIGURE – 34

\[\frac{10^{-3}}{y} = (A, B & C) \]

\[n = 0.3 \]

\[S + \log k = (D) \]

\[0.6 \ 0.8 \ 1.0 \ 1.2 \rightarrow 2 + \log [\text{arabinose}] = (D) \]
FIGURE – 35

$10^{-3} \frac{s(A, B, C)}{K'}$ [Lactose] (A, B, C)

$S + \log K'$

$\frac{1}{[\text{lactose}]}$

(A) $n = 0.3$

(B) $n = 0.5$

(C) $n = 0.8$

(D) $n = 1.0$

0.6 0.7 0.8 0.9 1.0 $2 + \log [\text{lactose}]$
FIGURE – 36

\[
\frac{2}{10(D-1)} \left(\frac{B}{D} \right) \rightarrow 48.3 \quad 48.5 \quad 48.7 \quad 48.9
\]