List of Figures

Figure 1.1. The gender-wise incidence and mortality rates for the fifteen leading cancer types in Indian population ... 2

Figure 1.2. Contribution of selected risk factors to all cancer deaths, worldwide, in high-income countries, and in low- and middle-income countries 3

Figure 2.1. Rationale for adding chemotherapy to radiation. 22

Figure 2.2. Showing basic types of quinones viz., benzoquinones, naphthoquinones and anthraquinones ... 28

Figure 2.3. GSQH$_2$ or ((GS)$_2$QH$_2$) represent mono- or diglutathione conjugated hydroquinone respectively; GPx represents glutathione peroxidase 30

Figure 2.4. Some naturally occurring 1, 4 naphthoquinones with anticancer potential .. 32

Figure 2.5. Different mechanisms of 1,4-naphthoquinone derivates cytotoxicity..... 36

Figure 2.6. Diagram of a drug-loaded liposome both with (sterically stabilized liposomes) and without (conventional liposomes) a PEG coating 39

Figure 2.7. Liposome-cell interaction .. 45

Figure 2.8. Passive and active targeting of tumor cells using liposomes............. 46

Figure 3.1. Mitochondrial dehydrogenase mediated reduction of yellow colored MTT to dark purple colored formazan .. 81

Figure 3.2. Role of lactate dehydrogenase enzyme in two-way conversion of lactate to pyruvate .. 82

Figure 3.3. Principle reaction involved in the estimation of glutathione using DTNB method ... 88

Figure 3.4. Reaction leading to the detection of reactive oxygen species by DCFH-DA assay .. 89

Figure 3.5. Juglone induced changes in LDH levels in melanoma cells............. 95

Figure 3.6. Cell survival curve for juglone against melanoma cells assessed using clonogenic assay ... 96

Figure 3.7. Genotoxic effect of juglone assessed by micronucleus assay; typical representative photographs of acridine orange stained B16F1 binucleate cells. 97

Figure 3.8. Genotoxic effect of juglone assessed using alkaline comet assay 98

Figure 3.9. Representative comet images .. 99
Figure 3.10. Effect of juglone treatment on the intracellular glutathione levels after treatment with various doses of juglone in melanoma cells. ...99

Figure 3.11. Effect of juglone treatment on the intracellular ROS levels after treatment with various doses of juglone in melanoma cells. ...100

Figure 3.12. Correlation studies after treatment with juglone A) between cell survival and GSH levels and B) between GSH levels and LDH levels..101

Figure 3.13. Morphological changes induced by juglone assessed using Acridine orange/Ethidium bromide staining...102

Figure 3.14. Agarose gel of electrophoresis of DNA ..103

Figure 3.15. Flow cytometric analysis of DNA content as an index of juglone-induced apoptosis...104

Figure 3.16. Flow cytometric analyses of apoptosis and necrosis using AnnexinV-FITC/PI dual staining...105

Figure 4.1. *In vivo* irradiation set up for the evaluation of radiosensitization potential of juglone. ...127

Figure 4.2. Acute toxicity studies for intravenously administered juglone using Probit method of analysis ...132

Figure 4.3. *In vivo* optimum dose selection studies for juglone.133

Figure 4.4. Effect of juglone treatment on the survival pattern of C57BL/6J mice bearing B16F1 tumor model ...135

Figure 4.5. Effect of juglone treatment on DNA damage levels136

Figure 4.6. Radiosensitizing potential of juglone *in vivo* against B16F1 melanoma cells. ...137

Figure 4.7. Radiosensitization potential of juglone treatment – Kaplan-Meier analysis of survival in C57BL/6J mice bearing B16F1 tumor model.................................138

Figure 4.8. Radiosensitizing potential of juglone *in vitro* against B16F1 melanoma cells assessed using clonogenic assay...139

Figure 4.9. Radiosensitization potential of juglone against melanoma cells *in vitro* assessed using alkaline comet assay. ...140

Figure 4.10. Effect of juglone, radiation and combination treatment on the intracellular ROS levels in melanoma cells assessed using DCFH-DA assay141

Figure 5.1. Chemical structure of soyaphosphatidyl choline ..162

Figure 5.2. Chemical structure of cholesterol ..163

Figure 5.3. Chemical structure of Methoxy Polyethylene Glycol Distearoyl Ethanolamine (mPEG2000-DSPE) ...164
Figure 5.4. FTIR spectra of pure juglone ... 172
Figure 5.5. FTIR spectra of the physical mixture of juglone with excipients 172
Figure 5.6. Showing the typical HPLC chromatogram for standard juglone 174
Figure 5.7. Calibration curve for juglone using the developed RP-HPLC method .. 174
Figure 5.8. Solution stability of juglone under different pH conditions at room temperature .. 175
Figure 5.9. Solution stability of juglone in acetate buffer at room temperature (25 °C) and elevated temperature (60 °C) ... 176
Figure 5.10. Effect of cholesterol content on entrapment efficiency of juglone into SSL... 178
Figure 5.11. Size distribution of the optimized (JL 9) SSL juglone 179
Figure 5.12. Zeta potential distribution of the optimized (JL 9) SSL juglone 180
Figure 5.13. Effect of mPEG2000-DSPE content on the in vitro release of SSL juglone .. 181
Figure 5.14. Transmission electron microscopic analysis of SSL juglone showing spherical shaped liposomes ... 181
Figure 5.15. Cytotoxic effect of free and SSL juglone against B16F1 melanoma cells grown in vitro assessed using MTT assay ... 182
Figure 6.1. Pharmacokinetic studies in tumor bearing mice following intravenous administration of 3H-juglone as free and sterically stabilized liposomal forms 199
Figure 6.2. Effect of free and SSL juglone on tumor growth in mice inoculated with B16F1 melanoma cells ... 202
Figure 6.3. Kaplan-Meier analysis of animal survival after various treatments of juglone on day 1, 3 and 5 as free or liposome encapsulated .. 203
Figure 6.4. Radiosensitizing potential of free and SSL juglone against B16F1 melanoma growing as solid tumor on C57BL/6J mice ... 204
Figure 6.5. Effect of free of SSL encapsulated juglone on the DNA damage levels in blood cells of mice treated with optimum dose of juglone 206
Figure 6.6. Toxicity evaluation of free and SSL juglone in C57BL/6J mice assessed using H & E staining of various tissues ... 207