References
REFERENCES

Abdul Baki AA (1972) Metabolism of barley seed during early hours of germination. Plant physiology 44, 733.


Allen C. F., Good P., Davis, HF., Chisum P, and Fowler SD (1966)
Methodology for the separation of plant lipids and application to spinach leaf and chloroplast lamellae J Amer. Oil Chem. 43, 223.

An Index model for predicting seed germination and emergence rates. Weed Technology 7:3 560 - 569.


Amaral A; Takaki M (Jun 1993) Weed Germination 8, Bidens Pilosa L Arqueries de Biologia E Technologia 36 : 2, 401 - 408.

Acidification, Growth promoter and red light effects on germination of skotodormant seeds of Hygrophiila auriculata. Environmental and Experimental Botany 38 : 4 471 - 477.
Amritphale D, dixit S, Singh B (Oct. 1993)


Andrews, H. L. 1974

Radiation biophysics. Prentice - Hall of India, New Delhi, pp. 264 - 265.

Arnon, D. J. 1949.


Atkins, C. A, Pate, J. S., Sharkey P. J, 1975

Asparagine metabolism - Key to the nitrogen nutrition of developing legume seeds. Plant physiol, 56 : 807 - 12.


Regulation of enzyme function. Annu. Rev. Microbiol. 23, 47.


Oxidative phosphoylation by mitochondia extracted from dry sunflower seeds. Plant Physiol. 95, 390-398.

Bagley B. W., Cherry, J. H., Rollins, M. L., and Altschul A. M. (1963)

A study of protein bodies during germination of Peanut Seed. Amer. J. Bot. 50, 523.


The Development of polysomes in the seed of Pisum arvensa. Biochemistry J. 105, 1195.

Bewley J. D. (1986)

In physiology of seed deterioration (eds m. B. Medonald jr and c. J. Nelson), crop science society of america special special publication no. 11. P.27, madison, wisconsin.

Beevers L (1968)
Protein degradation and proteolytic activity in the cotyledons of germinating Pea seeds (Pisum Sativum) phytochemistry 7, 1837.

Beevers L. and Guernsey F. S. (1966)
Changes in some nitrogenous components during the germination of Pea seeds. Plant Physiol. 41, 1445.

Beevers L and Splittstoessers W. E. (1968)
Protein and nucleic acid metabolism in germinating peas J. Exp. Bot. 19, 698.


Borthwick h. A., Hendricks s. B., Parker m. W.,toole e. H. And toole v. K. (1952)


Fat metabolism in higher plants. XI. the conversion of fat into carbohydrate in Peanut and Sunflower seedlings. J. Biol. Chem. 234, 498.

Brouquisse R; et al (1992)

Asparagine Metabolism and Nitrogen distribution during Protein degradation in sugar-starved maize Route tips. Planta 188(3). 1992, 384-395. Coden Planab Issn:


Synthesis of ribosomal proteins from stored mRNAs early in seed germination, Plant Mol.Biol. 28, 327-336.

Berry, T.A., and Bewley, J.D.(1992)

A role for the surrounding fruit tissues in preventing germination of tomato (Lycopersicon esculentum) seeds. A consideration of the osmotic environment and abscisic acid. Plant Physiol. 100, 951-957.

Bewley, J.D. (1982)


Physiology and Biochemistry of Seeds in Relation to Germination. 2. Viability, Dormancy and Environmental Control. (Berlin: Springer-Verlag).
Bewley J. D. (1986) in Physiology of seed deterioration (Eds M. B. McDonald Jr and C. J. Nelson)


The cooperative role of endo- β-mannanase, β-mannosidase and α-galactosidase in the mobilization of endosperm cell wall hemicellulases in germinated lettuce seed. Recent Adv. Phytochem 17, 137-152.


Respiratory metabolism and gene expression during seed germination. J. Plant Growth Regul. 11, 211-224.

Bradford, K.J. (1995)

Bradford, K.J. (1996)


Sucrose synthesis from acetate in germinating castor beans: Kinetics and pathway J. Biol. chem. 236, 958.

Casey, E. J. 1962
Van Nostrand Reinhold company.

Chakravorty A. K. (1969a) Ribosomal RNA synthesis in the germinating black eye pea (Vigna unguiculata)

Chakravorty A. K. (1969b) Ribosomal RNA synthesis in the germinating black eye pea (Vigna unguiculata)
II. the synthesis and maturation of ribosomes in the later stages of germination. Biochim. Biophys. Acta 179, 83.


Metabolism of 14C - maltose in Avena fatua seeds during germination plant physiol. 44, 770.


Chibi F, Angosto T, Garrido D, Matilla A (Oct. 1993)


Comparison of endogenous ABA and IAA contents in somatic and zygotic embryos of Hevea brasiliensis (Mull ARG) during ontogenesis. Plant science 91: 1, 111 - 119.

Evenari M., Neuman G. and Stein G. (1957)

Enzyme induction in higher plants. Science 165, 358.


Mapping Salt Tolerance genes in tomato (Lycopersicon esculentum) using Trait - Based marker analysis. Theoretical and Applied Genetics 87: 1.2 184 - 192.

Fujisawa H (1966)


Hormonal regulation in higher plants. Science 163, 1288.

Ghetic V (1966)

Seed Germination of Ribes hybrids Fruit varieties journal 47 : 4 229 - 233.


Henshall J. D. and Goodwin T. W. (1964)
Aminoacid activating enzymes in germinating pea seedlings. Phytochemis 3, 677.

Huang, A. H. C. (1987)
Change in metabolic characteristics of mitochondria from soyabean cotyledons during germination. Physiol. Plant 14, 89.

Ingle J and Hageman R. H. (1965)
Metabolic changes associated with the germination of corn II. Nucleic acid metabolism. Plant physiol. 39, 735. Ireland

Irving G. W. Jr. and Fontaine T. D. (1945)


Changes in the levels and composition of the esterified and unesterified sterols of Maize Seedlings during germination. Phytochemistry6, 1609.


Kincaid R. R. (1935)

Kinzel W. (1926)
Frost und licht, neuee tabellen, Eugen Ulmer, Stuttgart.

Conversion of Tiamine into its phosphoric esters in germinating broad beans, Bot. Mag. 44, 331.

Klein S, and Ben - Shaul, Y (1996)


Koloffiel C (1969)

Kornberg and BREVINS (1957)

Koch and Mc Meekin (1924) 154

Leachavalleu, K. 1969

Lea P. J., Fowden, L, Miflin, B. J. 1976.

Asparagine breakdown in leaves and maturing seeds. Plant physiol. suppl. 57 : 213.


In mobilisation of reserves in germination, p. 77 (Eds C. Nozzolillo, P. J. Lea and F. A. Loewus), recent advances in phytochemistry, vol. 17, plenum press.


Transport and metabolism of asparagine and other nitrogen compounds within the plant. In the biochemistry of plants, ed, B. J. Miflin, 5 : 569 - 608 - New York Academic.

Lee C. Y. and Shallenberger R. S. 1968

Changes in free sugar during germination of Pea seeds. Experientia 25, 692.


Arch. Biochem. Biophys. 225, 360

Longo C. P. (1968)

Evidence of de novo synthesis of isocitratase and malate synthetase in germinating Peanut cotyledons. Plant physiology 43, 660.

Malhotra S. S. and Spencer, M. 1970

Changes in the respiratory enzymatic, swelling and contraction properties of mitochondria from cotyledons of Phaseolus vulgaris L during germination. Plant physiology 46, 40.

Marbach I. and Mayer A. M. (1975)

plant physiol 56, 93.


Marcus A, Freeley J, and Volcani, T (1966)


Mayer A. M. Krishmar and Poljakoff-Mayber A (1968)
Maccione et al. (1972)

Isocitric lyase and isocitric dehydrogenase in germinating lettuce. Physiol. Plant 21, 183.


Photo Regulation of germination in seed of transgenic lines of Tobacco and Arabidopsis which express an introduced cDNA encoding phytochrome - A or Phytochrome - B.
Planta 191 : 3 402 - 408.


Isolation of mature cereal embryos and embryonic axes crop science 33 : 5.


Changes in nicotinic acid content and its nucleotide derivatives of rice and wheat seeds during germination. Physiol. Plant 21, 360.

Mullen R. T. gifford D. J. (Oct. 1993)


Physiol. Veg. 23, 75.


Murray D. R. (1992)

New Phytol. 120, 259-268.


New Comb E. H. (1967)


Nomura T, Kono Y, and Akazawa T (1969)

Enzymic mechanism of starch break down in germinating rice seeds II scutellum as the site of sucrose synthesis. Plant physiol. 44, 765.


Proteases of the Soyabean Cereal Chem. 32, 53.

Ooe and Stumpf, P. K. (1983a)

Plan physiology., 73, 1028

Opik H (1966)


Opik H (1968)

Development of cotyledon cell structure in ripening Phaseolus vulgaris seeds J. Exp. Bot. 19, 64.


Light environment and phytochrome controlled germination in piper auritum. Functional ecology 7:5 585 - 590.

Palmer, Julie M; Short, Timothy W; (1993)


Pate, J. S. Walker, J. Wallace, W. 1965


Pate J. S. (1989)


Penner D, and Ashton F. M. (1967)


Penner D, and Ashton F. M. (1966)


Nicholas and Alderson (1939)

Light environment and phytochrome controlled germination in piper auritum. Functional ecology 7:5 585 - 590.

Palmer, Julie M; Short, Timothy W; (1993)


Pate, J. S. Walker, J. Wallace, W. 1965


Pate J. S. (1989)


Penner D, and Ashton F. M. (1967)


Penner D, and Ashton F. M. (1966)


Person B (1993)


Pollock B. M. and Toole V. K. (1966)

Imbibition period as the critical temperature sensitive stage in germination of lima bean seeds. Plant physiol. 41, 221.


Prentice N. (1972)

Agr. Food chem. 20,764.

Prianshikov D. N. (1951)


Quale P. H., Colbert J. T., Hershy H. P. and Viestra R. D. (1963)


Rabe E. (1990)


Legume Research, 13 (1), 1 - 8


Distribution and properties of a potassium dependent asparaginase isolated from developing seeds of Pisum sativum and other plants. Plant physiol. 65. 22 - 26.


Protein content of Seed: Increase improves growth and yield. Science 165, 73.


Seed physiology vol-1, Academic Press, Australia.

Song P. S. (1983)


Sprent J. I. (1968)

Effects of benzyle adenine on cotyledon metabolism and growth of Peas Planta 81, 80.

Street; H. E, Helgi Opik (1984)

The physiology of flowering plants, 3rd edition, Elbs, Thomson litho ltd, East Kilbride, Scotland.

Streeter, J. G - 1974

Asparagine and asparagine transaminase from soyabean leaves. Plant physiol. suppl. 53 : 372.

Streeter, J. G. 1977


Small et al (1979)

Smith and Williams (1957)

Schulz and Klein (1963)


