LIST OF FIGURES

Figure - 2.1.1 Impurity, electric field and space charge profile of PIN diode.
Figure - 2.1.2 Equivalent circuit of PIN diode.
Figure - 2.1.3 Plot of normalized PIN diode resistance versus temperature using carrier lifetime coefficient \(m \) as a parameter.
Figure - 2.1.4 Schematic of a temperature compensation circuit.
Figure - 2.1.5 Schematic of a digital temperature compensation circuit.
Figure - 2.1.6 The temperature coefficient of carrier lifetime \((m) \) versus junction capacitance of the diode, diode passivation material as the parameter.
Figure - 2.1.7 Equiristance curve and load line of PIN diode.
Figure - 2.1.8 Equiristance curves for different \(p \) values.
Figure - 2.1.9 Equiristance curves for different \(m \) values.
Figure - 2.1.10 Equiristance curves and load lines for different attenuation settings.
Figure - 2.1.11 A simple diode bias circuit for PIN diode based attenuator.
Figure - 2.1.12 Schematic circuit diagram and simple RF equivalent circuit of the forward biased beam-lead PIN diode.
Figure - 2.1.13 MIC layout & assembly drawing of PIN diode attenuator.
Figure - 2.1.14 Photograph of the PIN diode based attenuator circuit.
Figure - 2.1.15 I-V characteristic of PIN diode (MPND 4005).
Figure - 2.1.16 Attenuation versus bias current of the diode MPND-4005.
Figure - 2.1.17 Attenuation versus frequency at different current and temperature.
Figure - 2.1.18 Measured PIN diode I-V data and load lines to determine \(V_{opt} \).
Figure - 2.1.19 PIN diode drier circuit for \(p \neq (2-m) \).
Figure - 2.1.20 A simple bias circuit for PIN diode based variable attenuator.
Figure - 2.1.21 PIN diode driver circuit for \(p = 2-m \).
Figure - 2.1.22 PIN diode driver circuit to eliminate effect of source resistance

Figure - 2.1.23 PIN diode driver circuit to eliminate effect of on resistance of switch

Figure - 2.2.1 Schottky diode structure.

Figure - 2.2.2 Energy band diagram of Schottky diode.

Figure - 2.2.3 Depletion layer of Schottky diode.

Figure - 2.2.4 Fermi level alignment of Schottky diode.

Figure - 2.2.5 RF equivalent circuit of forward biased Schottky diode.

Figure - 2.2.6 Simulated RF resistance variation with temperature at fixed current bias and fixed voltage bias condition.

Figure - 2.2.7 I-V characteristic and load lines of Schottky diode in presence of RF power.

Figure - 2.2.8 Equiresistance curve and optimum load line.

Figure - 2.2.9 Simple bias circuit of the Schottky diode.

Figure - 2.2.10 Schematic circuit diagram of Schottky diode circuit.

Figure - 2.2.11 Photograph of the Schottky diode circuit.

Figure - 2.2.12 Measured Schottky diode's V-I data and load lines for different attenuation at P_in = -30 dBm.

Figure - 2.2.13 Measured Schottky diode's V-I data and load lines for different attenuation at P_in = -25 dBm.

Figure - 2.2.14 Measured Schottky diode's V-I data and load lines for different attenuation at P_in = -20 dBm.

Figure - 2.2.15 Measured S21 variation over RF power level for V_opt = 0.75 Volts.

Figure - 2.3.1 Simulated brightness variation with temperature for fixed voltage bias and fixed current bias condition for LED.

Figure - 2.3.2 Equiintensity curve and load line of LED.

Figure - 2.3.3 Equiintensity curves and load lines for different brightness levels of LED.

Figure - 2.3.4 Equiintensity curves for different values of temperature coefficient (T_c).

Figure - 2.3.5 Equiintensity curves for different values of p.

Figure - 2.3.6 A simple bias circuit of LED.
Figure - 2.3.7 Calculated light intensity variation with temperature.

Figure - 2.3.8 Measured equiintensity curves of the diode 1N6092 over the temperature of -20 to +80 °C.

Figure - 2.3.9 Measured light intensity variation with temperature of the diode 1N6092.

Figure - 2.3.10 Series and parallel combination of several LEDs to achieve sufficient brightness.

Figure - 3.1 Typical I-V characteristic of MESFET with change of temperature.

Figure - 3.2 The equivalent circuit model of MESFET and HEMT.

Figure - 3.3 MIC assembly drawing and photograph of a 3-Stage C-band amplifier of MESFET (NE-13783).

Figure - 3.4 Photograph of a 3-Stage Ku-band amplifier of MESFET (NE67383).

Figure - 354 MIC assembly drawing and photograph of a 3-Stage Ku-band amplifier of pHEMT (CFY6708).

Figure - 4.1.1 Block schematic of the vector modulator.

Figure - 4.1.2 Schematic circuit of variable attenuator with phase shift.

Figure - 4.1.3 S21 variation of PIN diode over diode resistance.

Figure - 4.1.4 RF equivalent circuit of forward biased PIN diode.

Figure - 4.1.5 Simulated S21 plot of the variable attenuator.

Figure - 4.1.6 Schematic circuit diagram of the proposed vector modulator.

Figure - 4.1.7 Simulated S21 of vector modulator

Figure - 4.1.8 Photograph of vector modulators.

Figure - 4.1.9 Measured polar S21 plot of S-band vector modulator

Figure - 4.1.10 Schematic circuit of the temperature compensated analog vector modulator

Figure - 4.1.11 Schematic circuit of the temperature compensated digitally controlled vector modulator

Figure - 4.2.1 Measured I-V characteristics of Schottky diode in presence of RF power.

Figure - 4.2.2 Simulated RF resistance variation with temperature.

Figure - 4.2.3 Schematic of the proposed diode based linearizer.

Figure - 4.2.4 RF equivalent circuit of forward biased junction diode.
Figure - 4.4.9 I-O characteristic of channel amplifier with temperature compensation.

Figure - 5.1 Measurement to consider effect of temperature dependency of analog-switch, resistor, E_p, and ϕ_n.

Figure - 5.2 Plot of load line to determine V_{OPT}.

LIST OF TABLES

Table-2.1.1 Test results of the PIN diode based attenuator for $V_{OPT} = 1.19$ Volts.

Table-2.1.2 Test results of PIN diode based Attenuator (With Mechanical Switch).

Table-2.1.3 Test results of PIN diode based attenuator (With Analog Multiplexer, CD4051).