CONTENTS

CHAPTER 1

Introduction 1

CHAPTER 2

REVIEW OF LITERATURE 6

2.1 Tiger ecology and distribution 6
2.2 Evolutionary history 7
2.3 Conservation status of tiger 8
2.4 Non-invasive genetic sampling and animal population studies 11
2.5 Technical problems of working with DNA from noninvasive sources 12
2.6 Possible solutions to mitigate the technical problems 15
2.7 Probability of Identity 16
2.8 Some examples of studies using non-invasive genetic sampling 17

CHAPTER 3

GENERAL METHODS 20

3.1 DNA isolation from fresh blood 20
3.2 DNA isolation from stored blood 20
3.3 DNA isolation from plasmids (mini-prep) 21
3.4 DNA isolation from hair samples 22
3.5 DNA isolation from skin samples (museum skins, forensic samples etc) 22
3.6 DNA isolation of formalin preserved tissue samples 22
3.7 Purification of PCR products 23
3.8 Sequencing PCR reaction 23
3.9 Processing of samples for automated DNA sequencing 24
3.10 Colony hybridization 24
3.11 Southern hybridization 25
3.12 Preparation of electrocompetent cells 25
3.13 Transformation by electroporation 25
3.14 Sample preparation for allele sizing with Genemapper 25
3.15 Compositions of buffers and solutions 26
3.16 Software used in the analysis 27
 3.16.1 AutoAssembler™ 27
 3.16.2 Clustal X 27
 3.16.3 MEGA 3.1 (Molecular Evolutionary Genetic Analysis) 28
 3.16.4 ARLEQUIN 28
 3.16.5 CERVUS 29
 3.16.6 API-CALC 29
CHAPTER 4

DEVELOPMENT OF TIGER-SPECIFIC PCR PRIMERS AND THEIR APPLICATION IN CONSERVATION AND FORENSICS

4.1 Introduction 32
4.2 Materials and Methods
 4.2.1 Development and validation of tiger specific mitochondrial cytochrome b primers 33
 4.2.2 Field work for sample collection 34
 4.2.3 Forensic analysis with tiger-specific primers 34
 4.2.4 PCR amplification and data analysis 34
4.3 Results
 4.3.1 Development and validation of tiger specific PCR assay 35
 4.3.2 Scat sample analysis 38
 4.3.3 Forensic identification of samples of suspected tiger identity 38
4.4 Discussion 46

CHAPTER 5

DEVELOPMENT OF MICROSATellite MARKERS FOR GENETIC STUDIES OF BENGAL TIGER PANTHERA TIGRIS TIGRIS

5.1 Introduction 49
5.2 Materials and methods
 5.2.1 Construction of a small insert partial genomic library for tiger 50
 5.2.2 Screening for polymorphism 52
 5.2.3 Screening microsatellite markers from heterologous species 54
 5.2.4 Data Analysis 54
5.3 Results 54
5.4 Discussion 55
CHAPTER 6

CAN GENOTYPING OF DNA FROM TIGER FAECAL SAMPLES BE USED FOR POPULATION ESTIMATION?

6.1 Introduction 58

6.2 Material and methods
 6.2.1 Field Work and sample collection 60
 6.2.2 DNA extraction from scat samples 61
 6.2.3 Statistical analysis to ascertain the optimum extraction method 63
 6.2.4 Faecal sample preservation 64
 6.2.5 Probability of Identity, P(ID) 64
 6.2.6 Quantification of DNA from scat samples by real time PCR 65
 6.2.7 Genotyping and sex identification of faecal samples 66
 6.2.8 PCR amplifications 67

6.3 Results
 6.3.1 Faecal sample preservation 69
 6.3.2 Test for the optimum DNA extraction method 69
 6.3.3 Probability of Identity 69
 6.3.4 Quantification of DNA from scat samples by real-time PCR 71
 6.3.5 Genotyping and sex identification of faecal samples 71

6.4 Discussion 77

CHAPTER 7

POPULATION ESTIMATION OF BENGAL TIGER PANTHERA TIGRIS TIGRIS BY GENOTYPING FAECAL SAMPLES: A STUDY AT TADOBA-ANDHARI TIGER RESERVE, INDIA

7.1 Introduction 83

7.2 Materials and methods
 7.2.1 Study area 84
 7.2.2 Sample collection 84
 7.2.3 DNA isolation, species identification and scat encounter frequency 86
 7.2.4 Microsatellite genotyping 86
 7.2.5 Assessing genotype reliability 87
7.2.6 Estimation of population size
7.2.7 Estimation of tiger density

7.3 Results

7.3.1 Species identification and scat encounter frequency
7.3.2 Assessing genotyping reliability
7.3.3 Population size estimation
7.3.4 Calculation of tiger density

7.4 Discussion

CHAPTER 8

GENETIC DIVERSITY IN BENGAL TIGERS: A PRELIMINARY ANALYSIS

8.1 Introduction
8.2 Materials and methods

8.2.1 Samples
8.2.2 Primer design for Hypervariable Region 1 and PCR amplification
8.2.3 HVR 1 sequence analysis
8.2.4 Microsatellite data analysis

8.3 Results

8.3.1 HVR 1 analysis
8.3.2 Genetic diversity analysis using microsatellite markers

8.4 Discussion