Table of Contents

Chapter 1

Candida albicans: A cellular and molecular perspective 1-34

1.1. Introduction 1
1.2. Morphogenetic machinery 2
 1.2.1. Polarity determinants
 1.2.2. Spitzenkorper and hyphal development
 1.2.3. Nuclear positioning and division
 1.2.4. Signaling pathways
 1.2.4.1. MAP kinase pathway
 1.2.4.2. c-AMP-PKA pathway
 1.2.4.3. Other signaling pathways and regulators involved in dimorphism
 1.2.5. Roles of cyclins and cyclin-dependent kinases in morphological control
 1.2.6. The white-opaque switch
 1.2.7. Pheromone mediated morphological changes
 1.2.8. Chlamydospore formation
 1.2.9. Other growth modes
 1.2.10. Negative regulatory circuit
1.3. Arsenal of the pathogen 24
 1.3.1. Thigmotropism/chemotropism
 1.3.2. Hydrolytic enzymes
 1.3.3. Cell surface adhesions
 1.3.4. Biofilm formation
 1.3.5. Morphogenetic transition
 1.3.6. Super-oxide dismutases
 1.3.7. Utilization of N-acetylglucosamine
1.4. Host defense against Candida 31
 1.4.1. Farnesol production
 1.4.2. Histatin secretion
 1.4.3. Phospholipases A (2)
 1.4.4. Toll-like receptors
 1.4.5. Reactive oxygen species

Chapter 2

Cloning and characterization of an N-acetyl glucosamine inducible serine-threonine kinase from Candida albicans: 35-68

2.1. Protein kinases 35
 2.1.1. Structure
 2.1.2. Chemical activity
 2.1.3. Regulation
 2.1.4. Serine/threonine specific protein kinases
 2.1.5. Perspectives
2.2. N-acetyl glucosamine-the versatile monosaccharide 38
2.3. Protein post-translational modifications and targeting of the protein 39
 2.3.1. Protein phosphorylation
 2.3.2. Protein acylation
 2.3.3. Protein alklylation
 2.3.4. Protein glycosylation
 2.3.5. S-S bond formation
2.4. Role of glycosylation 43
 2.4.1. Role of N-glycosylation
 2.4.2. Role of O-glycosylation
2.5. Background of the work 44
2.6. Materials and Methods 45
2.6.1. Strains and plasmids used
2.6.2. Media and solutions
2.6.3. Growth and maintenance of strains
2.6.4. Storage of C. albicans and E. coli strains
2.6.5. Cloning of CaENV7 gene
 2.6.5.1. PCR amplification of CaENV7 gene
 2.6.5.2. Vector preparation
 2.6.5.3. Ligation
 2.6.5.4. Transformation and screening of recombinants
 2.6.5.5. DNA sequence analysis
2.6.6. Gene disruption in C. albicans
 2.6.6.1. Construction of ENV7 disruption cassette
 2.6.6.1.1. Construction of pUC19-CUB
 2.6.6.1.2. Construction of pEl-B
 2.6.6.2. First allele disruption of CaENV7 in C. albicans strain CAF3-1
 2.6.6.3. Curing of URA3 Marker
 2.6.6.4. Disruption of Second Allele
2.6.7. Morphogenetic Studies
 2.6.7.1 Induction of filaments in liquid media
 2.6.7.2. Study of Morphogenesis on Solid Plates
 2.6.7.3. Study of effect of Calcofluor White and Congo Red on C. albicans strains
 2.6.7.4. Microscopy
2.6.8. Localisation Studies
 2.6.8.1. Gene-specific sequences used to generate tag cassettes for CaENV7
 2.6.8.2. Transformation of C. albicans and identification of integration events
 2.6.8.3. Microscopy
2.6.9. Endoplasmic reticulum staining with ER-TRACKER-RED
 2.6.9.1. Preparation of staining solution
 2.6.9.2. Cell preparation and staining
 2.6.9.3. Microscopy
2.6.10. Brefeldin A treatment of cells
 2.6.10.1. DAPI staining of cells
 2.6.10.2. Merging of images
2.6.11. Study of Effect on Adherence
 2.6.11.1. Growth of C. albicans strains and counting of cells
 2.6.11.2. Collection of Human Buccal Epithelial Cells (HBEC)
 2.6.11.3. Incubation of Yeast Cells with HBEC
2.6.12. RNA isolation and Northern Blot analysis
2.6.12.1. Time kinetics of CaENV7 expression in GlcNAc containing medium
2.6.13. Two hybrid assay
 2.6.13.1. Preparation of BamHI-PstI digested pGAD 424
 2.6.13.2. Preparation of insert
 2.6.13.3. Setting up ligation
 2.6.13.4. Preparation of pGBT9 vector
 2.6.13.5. Preparation of insert
 2.6.13.6. Setting up ligation
 2.6.13.7. Co-transformation of HF7C with plasmids pGAD-H1 and PGBT9-E1 along with positive control
 2.6.13.8. β-galactosidase assays
2.6.14. Chromosomal tagging of CaENV7 with tandem 6Xhis and FLAG epitope tag
 2.6.14.1. Strain construction
 2.6.14.2. Growth condition
 2.6.14.3. Protein visualization and Western blot analysis
2.6.15. Chromosomal tagging of CaENV7 with 13myc tag
 2.6.15.1. Strain construction
 2.6.15.2. Growth conditions
 2.6.15.3. Western blot analysis

2.7. Results and discussions
2.7.1. Identification and cloning of CaENV7 gene from Candida albicans
2.7.2. Disruption of CaENV7 gene in Candida albicans
2.7.3. Morphogenesis studies of mutant strains
2.7.3.1. Morphogenesis on Solid Plates
2.7.3.2. Morphology in liquid media
2.7.4. Effect of antifungal compounds
2.7.5. Localisation of CaENV7
2.7.6. Staining with ER Tracker-Red
2.7.7. Effect of Brefeldin A treatment
2.7.8. Effect on adherence
2.7.9. Expression of HXK1 gene in response to GlcNAc
2.7.10. Two-hybrid assay
2.7.11. Tandem affinity tagging of the CaENV7 gene
2.7.12. Myc epitope tagging

2.8. Conclusion

Chapter 3:

N-acetyl glucosamine catabolic pathway and its role in virulence of Vibrio cholerae

3.1. Introduction
3.1.1. Habitat
3.1.2. Pathogenesis
3.1.3. Quorum sensing and Biofilm formation
3.1.4. Genomics and evolution

3.2. Amino sugar utilization by bacteria

3.3. NAG C—the regulator

3.4. Materials and methods
3.4.1. Strains and Plasmids used
3.4.2. Growth and Maintenance of V.cholerae strains
3.4.3. Storage of V.cholerae strains
3.4.4. Identification of V.cholerae strains
3.4.5. Cloning of nagA, nagB, nagC and nagE genes from V.cholerae El Tor strain CO-366
3.4.6. Construction of deletion cassettes
3.4.6.1. Insert preparation for the construction of nagA, nagB and nagE deletion plasmid
3.4.6.2. Preparation of vector
3.4.6.3. Insert preparation for the construction of nagC deletion plasmid
3.4.6.4. Preparation of vector
3.4.6.5. Ligation
3.4.6.6. Transformation and screening of recombinants
3.4.6.7. Construction of V.cholerae mutant strains compromised in GlcNAc Utilization
3.4.7. Growth of mutants on GlcNAc plates
3.4.8. Adherence
3.4.9. Study of colonization of V.cholerae strains in suckling mice model
3.4.10. GM1-ganglioside-dependent enzyme-linked immunosorbent assays for assa of CT production
3.4.11. RNA isolation and RT PCR analysis
3.4.12. Northern blot analysis
3.4.13. Preparation of pMhe7Tc-C for protein complex purification:
3.4.13.1. Preparation of insert
3.4.13.2. Preparation of vector
3.4.13.3. Ligation
3.4.13.4. Transformation and screening of recombinants
3.4.13.5. Overexpression of NagC protein from the T7 promoter in E. coli
3.4.13.6. Induction with Soluble Carbohydrates for Expression Analysis
3.4.13.7. RNA extraction
3.4.13.8. RNA Quality Control
3.4.13.9. Labeling and Microarray hybridization
3.4.13.10. Hybridisation and Scanning

3.5. Results and discussions
3.5.1. Identification and Classification of *V. cholerae* strain VC20
3.5.2. Presence of virulence genes in CO366
3.5.3. Cloning of *nagA nagB*, *nagC* and *nagE* genes from *V. cholerae* El Tor strain CO366
3.5.4. Construction of *V. cholerae* mutants impaired in GlcNAc utilization
3.5.5. Mutants are incapable of GlcNAc utilization
3.5.6. Mutants have intact virulence genes
3.5.7. Cholera toxin production is not affected in the nag mutants
3.5.8. Mutants compromised in GlcNAc utilization have reduced adherence and colonization capability in suckling mice model
3.5.9. Mutant colonies recovered from intestine showed copious amount of exopolysaccharide production
3.5.10. NAG C overexpression
3.5.11. Expression analysis of the NagC mutant

3.6. Conclusion

4. Summary

5. Appendix 1

6. Appendix 2

7. Bibliography